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Section A describes our volatility estimator, justifies it, and compares it with alternative ones.
Section B analysis whether our results hold using different volatility estimators. Section C
addresses the heterogeneity depending on option liquidity. We justofy our measure of the slope in
Section D and argue why it serves as an estimate of the error induced by the flat-term structure
assumption of previous papers. Section E assesses the effect of assuming different functional
forms for the term structure. Section F relaxes the assumption that all announcement dates are
known in advance with certainty and uses a proxy for the expected announcement dates instead
of the actual ones. Section G extends the model to account for price and announcement volatility
jumps. To compute the distribution of the estimator for signals that are uninformative by design,
Section H provides a falsification exercise. Section I describes the construction of the alternative
measures of informativeness presented in Section 4 of the paper. Section J takes an event-study
approach focusing on short windows around the market signal. We provide the numbers used to
create the figures in the paper in Section K. We use alternative information measures to study
prior signals in Section L. Section M takes potential heterogeneity in informativeness by firm
and by quarter into account.



A Estimating implied volatility

The main dependent variable in the paper is the variance under the risk-neutral measure. To ex-
tract this quantity, most of the previous literature focuses on three methods: the non-parametric
method proposed by Bakshi et al. (2003) (BKM), the non-parametric method proposed by
Demeterfi et al. (1999) (DDKZ) and used in the computation of the Chicago Board Options Ex-
change’s Volatility Index (VIX), and the implied volatility computed by OptionMetrics, which
relies on the log-normality of returns as Black-Scholes formula. This appendix explains how we
applied each of the methods and discusses their advantages and disadvantages. Nonetheless,
any methodology delivers similar results.

Regardless of the method, to avoid major effects of illiquidity and to be able to compute the
implied variance, we drop observations (firm-date-maturity-strike quadruplets) that satisfy one

of these conditions:

There is no information about the underlying price.

The bid price is zero.

The ask price is lower or equal to the bid price.

OptionMetrics does not provide the implied volatility (this is a signal of non-standard

options).

We also net the discounted dividends from the underlying spot price using the projected ex-
dividend date and dividend amount provided by OptionMetrics. We use as rate of discount the
zero-coupon yield provided by OptionMetrics linearly interpolated across the available maturi-

ties.
Non-parametric

The non-parametric methods assume that we observe a continuum of strikes and we integrate
the weighted option prices across all strikes to obtain the risk-neutral variance. Unfortunately,
we only observe a finite number of strikes and, for most of them liquidity is low. There are
two ways to proceed using OptionMetrics data. The first one consists of using the quoted

midpoints of each available option, similar to BKM. The second one relies on the volatility



surface provided by OptionMetrics and has also been used extensively (e.g., Driessen et al.,
2009). Although the second approach provides smoother estimates, the interpolation algorithm
used by OptionMetrics across strikes and maturities eliminates any discontinuity across strikes
or along the term structure. Hence, by construction, it eliminates the variation from which we
identify the effect. As a consequence, we rely on quoted midpoints. In-the-money and out-
of-the money options carry the same information due to the put-call parity; hence, following
the literature, we keep out-of-the-money options to reduce the impact of early exercise. Since
we need to assume a wide range of strikes, we drop any date-firm-maturity triplet with less
than six out-of-the-money options to compute the non-parametric measures. Then we apply the
following discretized version of the original BKM formula:
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where C; ; - . refers to the midpoint of call option prices, P;; ; ;. refers to put option prices, and K
is the strike price. r; ; is the zero-coupon yield provided by OptionMetrics interpolated linearly.
Sitr is the spot price minus the discounted expected dividends from ¢ to 7. The subscripts
indicate the firm (), the day (¢), the maturity (), and the strike (k). Strikes are numbered
from the lowest to the highest such that K;; ., > K;;xr—1Vk. We also construct the DDKZ

measure using the following discretized formula:
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where Q; ;-1 is the midpoint quote of the option (puts or calls). Ky is the strike closest to the
spot price. k = {1,..., N;; -} indeces both out-of-the-money put and call options.

The discrete approximation takes two arbitrary decisions: i) prices across strikes are inter-
polated linearly and ii) prices below the minimum strike or above the maximum strike are not
considered. Both of these decisions, as well as any alternative one, create noise in our implied
volatility estimator. However, this noise is likely to be unrelated to the term structure, and more
importantly, unrelated to ex ante signals. Nonetheless, to avoid extremely noisy observations,

we drop those firm-date-maturity triplets from the sample for which:!
e DDKZ volatility exceeds 200% (573 triplets)
e BKM volatility exceeds 200% (186 triplets)
e OptionMetrics at-the-money volatility exceeds 200% (3,850 triplets)

e One of the measures doubles the mean of the three measures (97 triplets)

!These filters do not change the results as they exclude 0.13% of the sample.



In the paper we focus on the BKM measure because it measures the implied quadratic
variation in the presence of jumps while DDKZ captures the integrated variance if the process is
continuous. Nonetheless, we repeat all the results using the DDKZ measure and the closest-to-
at-the-money OptionMetrics volatility for the same set of firm-date-maturity triplets and results

are almost identical (see Tables in this section).
Parametric

Patell and Wolfson (1979) and Dubinsky et al. (2019), among others, hinge on the implied
volatility provided by OptionMetrics. This volatility is the result of discretizing Black-Scholes
into a binomial model and computing the volatility of an American option. This approach
has the advantage that we can obtain the implied volatility with just one option per firm-date-
maturity. But it carries some disadvantages. First, note that discretizing is not an issue anymore
but it translates into an aggregation issue. In particular, the implied volatility across strikes is
different. We follow Dubinsky et al. (2019) and use the closest to at-the-money available option.
This option has the highest Vega and, therefore, its price is most affected by the earnings
announcement risk. As a consequence, the identification would be cleaner.

The second disadvantage is the parametric assumption. The above-mentioned papers as-
sumed the Black-Scholes model holds, at least to some extent. However, if insiders exploit their
private information, the Black-Scholes model does not hold because the signal the market re-
ceives from these trades is extremely asymmetric (see illustrative example below). Therefore,
the methodology would be incorrect under the alternative hypothesis. Nonetheless, given the
consistency of results for the subset of firm-day-maturity triplets in which we can compute the
non-parametric volatility, this disadvantage does not seem to play a major role. Hence, we re-
estimate the main results with every observation for which we observe the parametric implied

volatility to increase the sample size and assess the consequences of sample selection.
Illustrative example

This example illustrates why Black-Scholes implied volatility might provide wrong conclusions
in the presence of informed traders. In particular, we show that the implied volatility computed
using Black-Scholes increases after the market observes other signals such as insider trading,

even if the risk-neutral volatility decreases.



Assume that at time 0 there is an asset with price Sy and payoff at T' equal to V. Con-
sider the canonical model in which the risk-neutral probability of the payoff is such that Vp =
eT_L;TJr“TSO and er ~ N(0,T). Following Glosten and Milgrom (1985), a risk-neutral in-
formed investor, who knows v with certainty, trades one unit of the asset at time 1. Consider
for simplicity that investors know she is indeed informed and the information investors learn
does not change the Radon-Nikodym derivative that links the risk-neutral and physical proba-
bility measures. For instance, this is the case if the information is idiosyncratic to the firm and
the marginal investor is fully diversified.

Due to risk-neutrality, the informed investor always trades. She buys if the liquidation value

T-1)

exceeds the forward price, Vi > e’ Sy = Fp, and sells otherwise. Therefore, the asset prices

after the informed agent buys are given by:
S =e "I VEWVp|Vr > ) Ci(K) = e "TVE (Vv — K)T [V > Fy)

where C7(K) indicates the price of a call option with strike price K, and E denotes the expecta-
tion under the risk-neutral measure. To ease the exposition, we use (a)™ to denote the maximum
between ¢ and 0. Since we aim to show a counterexample in which Black-Scholes provides the
wrong prediction, we focus on the call option after the informed investor buys. Nonetheless, a
similar procedure will provide counterexamples in the other situations.

First, we prove the intuitive result that the risk-neutral variance of the asset decreases with
the new information. To ease the exposition we refer to the logarithm of the price, liquidation

value and forward price as s,v, and f respectively. We define 7 =T — 1.
Lemma 1. The risk-neutral variance is lower after updating the beliefs with the new information
V(UT — 81|UT > f()) < V(UT — Ul) = 0'27'

2 ... . .
Proof. vr —v1 = r — 5T — vy + oer. Hence the conditional distribution vy — vilop > fp is a

truncated normal whose variance is given by:
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is true for all a (see Gordon, 1941). O

> «. The left-hand side of the equation is the inverse Mills ratio; hence, the inequality

Then, we prove that Black-Scholes implied variance is higher than the initial one. To do that,
we show that the Black-Scholes formula using the initial implied volatility (o) results in a lower
call price than the one based on risk-neutral pricing under the truncated distribution. Since the
derivative of the Black-Scholes formula with respect to volatility, named Vega, is positive for

the whole support, the implied volatility must be higher to equal the call price.

Lemma 2. The call price is higher than the one predicted by Black-Scholes using the uncondi-

tional risk-neutral volatility o.
Cy1(K) > BS(K,o,v1,7,7T)

where BS(k,s,v,r,T) refers to the Black-Scholes function with strike price k, volatility s, spot

price v, risk-free rate r, and maturity T.

Proof. Denote as g(v,r,7) and G(v,r,7) the pdf and cdf of vy given v; assumed by the Black-

Scholes model for a maturity equal to 7 and an interest rate equal to r. Then,
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This example illustrates the problem of using Black-Scholes in an extreme setting. The more
symmetric the posterior signal received from the trade is, the more reliable is Black-Scholes.
There are many missing ingredients that would contribute to relaxing the problem and are likely
to play a role. For instance, investors might not be able to distinguish informed an uninformed
agents; informed agents might not know the actual liquidation value but just a noisy signal of

that value, etc.
Comparison

Table A.1 compares the informativeness of the earnings announcement across the three different

volatility measures. We observe that BKM provides the highest estimate, while there are mild



differences with the other two volatility measures. Nonetheless, if we expand the sample and
consider the whole OptionMetrics sample, the average relevance of earnings announcements
decreases. This evidence suggests that investors rely less on accounting information to price
those firms outside our original sample. Yet, earnings announcements explain 9% (2.26 x 4) of

the total variance of an average firm.

Table A.1: The informativeness of earnings announcements - Different volatility measures

The first column of this table repeats the third column of Table 4 which includes the baseline specification
to estimate A. Then, column (2) repeats the estimation using the implied volatility measure developed
by Demeterfi et al. (1999). Column (3) and (4) use the implied volatility provided by OptionMetrics.
While column (3) uses the same sample as the other measures, column (4) includes every other option
for which we have implied volatility. Standard errors are clustered at both the day and the firm-quarter

k kx

level and presented in parentheses. *, ** and *** indicates statistical significance at the 10%, 5%, and

1% level respectively.

Dep. var.: implied volatility

(1)

(2)

(3)

(4)

2.665*** 2.517%* 2.639*** 2.258%**

1(T > tg) ()

T—t (0.023) (0.022) (0.022) (0.022)
Maturity pol. Yes Yes Yes Yes
Learning pol. No No No No
Fixed Effects Day x firm Day x firm Day x firm Day x firm
Ajusted R2 0.949 0.960 0.969 0.925
Obs. 3,039,877 3,039,877 3,039,877 6,148,923




B Alternative measures of volatility and prior signals

Although Section A shows that the selection of one volatility measure instead of the alternatives
has a small impact on the average relevance of the announcement, it might be the case that the
choice of the measure matters for conclusions on how the signals affect the informativeness of
the announcement. In this section, we explore this possibility. Tables B.1 and B.2 provide the
results of the estimation using the alternative volatility measures. We observe that the effects
are very similar across measures. Table B.3 implements the model on the whole sample using
the parametric volatility. In this case, we also observe similar results. These results suggests
that our sample is not fully representative of the OptionMetrics universe while it constitutes a

close approximation.



Table B.1: Earnings information disclosed by other signals: Demeterfi et al. (1999)

This table reports the results of the regression shown in Equation (3). The dependent variable

is twice the log of implied volatily. Buys (Sales) is the number of days with net buying (sell-
ing) by corporate insiders since the last EA. Forecastt (Forecast™) is the number of upward
(downward) forecast revisions since the last EA. Recom™ (Recom™) is the number of upward
(downward) recommendation revisions since the last EA. Standard errors are clustered at both
the day and the firm-quarter level and presented in parentheses. Table 6 describes the vari-

ables. *, ** and *** indicates statistical significance at the 10%, 5%, and 1% level respectively.

Dep. var.: implied vol. (1) (2) (3) (4)
1(T > tgr) 2.373*** 2.311*** 2.429*** 2.313***

Tt (0.023) (0.026) (0.027) (0.030)
1(T >t -0.053*** -0.049*** -0.050%**
1T >tr) x Forecast™

T—t (0.005) (0.005) (0.005)
1 T -0. kokk -0. kskok -0. kkok

(T > tg) « Forecast- 0.069 0.065 0.056

T—1 (0.004) (0.004) (0.004)
1(T > tr) -0.062*** -0.038*** -0.053***
————- X Recom™

T—t (0.015) (0.014) (0.014)
1(T > tr) _ -0.101*** -0.062*** -0.057***
————= X Recom

T—1 (0.015) (0.015) (0.015)
]— T _ .1 kkk
LT >tR) o puys 0.107

T—t (0.020)
1 X kkk

(T > tg) « Sales 0.050

T—1 (0.004)
Maturity pol. Yes Yes Yes Yes
Signal x maturity pol. Yes Yes Yes Yes
Learning pol. Yes Yes Yes Yes
Fixed effects Day x firm Day x firm Day x firm Day x firm
Ajusted R2 0.961 0.960 0.961 0.961
Obs. 3,039,877 3,039,877 3,039,877 3,039,877
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Table B.2: Earnings information disclosed by other signals: OptionMetrics

This table reports the results of the regression shown in Equation (3).
is twice the log of implied volatily.

The dependent variable
Buys (Sales) is the number of days with net buying (sell-
ing) by corporate insiders since the last EA. Forecastt (Forecast™) is the number of upward
(downward) forecast revisions since the last EA. Recom™ (Recom™) is the number of upward
(downward) recommendation revisions since the last EA. Standard errors are clustered at both
Table 6 describes the vari-
ables. *, ** and *** indicates statistical significance at the 10%, 5%, and 1% level respectively.

the day and the firm-quarter level and presented in parentheses.

Dep. var.: implied vol. (1) (2) (3) (4)
1(T > tg) 2.377** 2.296*** 2.422%** 2.293%**

Tt (0.023) (0.026) (0.027) (0.030)
1(T >t -0.055"** -0.052%** -0.052***
1T >tr) x Forecast™

T—t (0.005) (0.005) (0.005)
1 T -0. 2*** -0. kskok -0. kokok

(T > tg) « Forecast- 0.07 0.068 0.057

T—1 (0.004) (0.004) (0.004)
1(T > tr) -0.060*** -0.035** -0.052***
————- X Recom™

T—t (0.015) (0.014) (0.014)
1(T > tr) _ -0.097** -0.056™** -0.050***
————= X Recom

T—1 (0.016) (0.016) (0.015)
1(T -0.114***
LT >tR) o puys 0

T—t (0.021)
1 X Kk >k

(T > tg) « Sales 0.057

T—1 (0.004)
Maturity pol. Yes Yes Yes Yes
Signal x maturity pol. Yes Yes Yes Yes
Learning pol. Yes Yes Yes Yes
Fixed effects Day x firm Day x firm Day x firm Day x firm
Ajusted R2 0.970 0.970 0.970 0.971
Obs. 3,039,877 3,039,877 3,039,877 3,039,877
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Table B.3: Earnings information disclosed by other signals: Whole OptionMetrics

This table reports the results of the regression shown in Equation (3).
is twice the log of implied volatily.

The dependent variable
Buys (Sales) is the number of days with net buying (sell-
ing) by corporate insiders since the last EA. Forecastt (Forecast™) is the number of upward
(downward) forecast revisions since the last EA. Recom™ (Recom™) is the number of upward
(downward) recommendation revisions since the last EA. Standard errors are clustered at both
the day and the firm-quarter level and presented in parentheses. Table 6 describes the vari-

ables. *, ** and *** indicates statistical significance at the 10%, 5%, and 1% level respectively.

Dep. var.: implied vol. (1) (2) (3) (4)
1(T > tgr) 1.935** 1.910*** 1.985%** 1.806***

T—1 (0.023) (0.025) (0.026) (0.028)
1(T >t -0.0217** -0.019*** -0.028**
1T >tr) x Forecast™

T—1 (0.004) (0.004) (0.004)
1(T >t -0.0317** -0.028"** -0.020***

(T > tg) « Forecast— 0.03 0.028 0.020

T—1 (0.004) (0.004) (0.004)
1(T > tr) -0.027** -0.016 -0.044**
——~ " x Recom™

T—¢ (0.012) (0.011) (0.011)
1(T > tr) _ -0.065*** -0.048"** -0.050***
————= X Recom

Tt (0.013) (0.013) (0.012)
1(T 0.036*
LT >tR) o puys

T—¢ (0.022)
1(T >t 0.118***
1(T>1tr) % Sales

T_1 (0.005)
Maturity pol. Yes Yes Yes Yes
Signal x maturity pol. Yes Yes Yes Yes
Learning pol. Yes Yes Yes Yes
Fixed effects Day x firm Day x firm Day x firm Day x firm
Ajusted R2 0.925 0.925 0.926 0.927
Obs. 6,148,923 6,148,923 6,148,923 6,148,923
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C Option liquidity

Section A shows that extending the sample to the whole OptionMetrics universe changes slightly
the magnitude of the effect. This evidence suggests that option liquidity might correlate with
the informativeness of the earnings announcement. In this section we investigate how informa-
tiveness varies with option liquididy within our restricted sample and if option liquidity affects
the estimation of the effect of insider trading. First, we examine how the number of options
and maturity varies over time until the next earnings announcement. Further, we calculate the
average value of total open interest of each firm-day-maturity-triplet in a given firm-quarter.
We then sort the observations by open interest for each quarter and create groups.

If the proximity to the next earnings announcement affects the availability of observable
option prices or there is a systematic relation between days to maturity and the days left until
the next announcement, one might be concerned about a potential bias in our measure. Panel
A of Figure C.1 shows the average number of options as well the top and bottom quartile by
days until the next earnings announcement, indicating that the number of options is relatively
stable over time. Panel Panel B presents the average days to maturity by days until the next
announcements, also suggesting that there is no systematic relation over time.

Figure C.2 shows how our measure of earnings announcement informativeness varies over
open interest deciles. We find that the measure of earnings announcement informativeness
decreases with open interest. This may be a consequence of liquidity but it may also be the
result of firms without a liquid option market being less monitored; thus, relying more on

earnings announcements.
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Figure C.1: Number of options and maturity over time to the next announcement

These graphs show the average number of options (Panel Panel A) and the average number of days to
maturity (Panel Panel B) over the days until the next earnings announcement, as well as the lower and
upper quartiles.
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Figure C.2: EA informativeness by open interest deciles

These plots depict the estimate of the informativeness of earnings announcements, and the 95% con
dence intervals across deciles of open interest. Standard errors are clustered at both the day and the
firm level.
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D Error due to the term structure

Section 3 analyzes how our estimator of the bias of the measure proposed by Dubinsky et al.
(2019) correlates with different signals. In this section, we explain in further detail how we
construct the measure and provide evidence of its use as an estimate of the error induced by
the flat term structure assumption. Because Dubinsky et al. (2019) do not use options expiring
before the announcement, we use them to estimate the slope of the variance term structure and

define the error due to the flat term-structure assumption for firm 7 on date ¢ as:

1 QL 1v? —IVZ

P
M—1

-1 —1
= Ti—1 + 7;

Error;y =

where M is the number of options expiring before the announcement, 7 indicates an available
time to maturity such that 7 < 7 < ... < 77, and IV is the Black-Scholes volatility. Any mea-
sure of the term-structure would serve as an estimate of the bias. We select this one for two main
reasons. First, this measure would exactly capture the bias if options expiring before and after
the announcement had the same time-to-maturity distribution and there was no measurement
error. In practice, they do not, but the violation of those assumptions is unlikely related to
signals by insiders and analysts. Second, this measure has the same functional form as Dubin-
sky et al. (2019) measure; hence, it has a nice interpretation as a placebo test. In particular, it
corresponds to an exercise in which we assume that the earnings announcement date is before
the first expiration date, and we estimate the informativeness considering all options that expire
after this false announcement and before any real announcement.

This measure is a proxy for the error due to the flat term-structure assumption, but it does
not measure exactly the error. This feature precludes us from making any conclusion about
the average error or the size of the error because the measurement error in the variable might
influence both. Nonetheless, the measurement error will not affect the estimates when we include
our measure as a dependent variable in a regression. To reduce the noise of our error measure
and Dubinsky et al. (2019) measure, we aggregate them at the firm-quarter level by taking the
median. Table D.1 shows the summary statistics. The low liquidity of long-term options leads to
fewer announcements in our sample. Our proxy coincides with the argument by Dubinsky et al.

(2019) that the bias induced by the flat-term structure might be close to zero, although it is
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slightly negative.? The remaining question is whether the variability of the bias is independent
of the relevant variables or not.

Before answering this question, we must show that our bias measure is related to the bias,
not pure noise. To do that, we regress the measure by Dubinsky et al. (2019) on our bias
measure. If our proxy was pure noise, or, equivalently, their measure was not biased, there
would be no correlation between the two variables. Column 1 of Table D.2 shows that, indeed,
these two variables are correlated. One possibility is that the whole correlation occurs at the
firm or quarter level; hence firm and quarter fixed effects could absorb the bias. Columns 2 and
3 show that the correlation persists even if we control for firm and quarter fixed effects. We
acknowledge there are few extreme outliers in the sample. In column 5, we restrict the sample
to observations in which the absolute value of the ratio between the bias and the measure itself
does not exceed 100%. The estimate increases considerably despite excluding just 12% of the
sample, and statistical significance increases.

To interpret the estimates is useful to consider the following model:

o2DJKS _ j2TRUE |

5,9 ,0,q ig t Uigs  Errorig=big+vig

2DJKS
where Oria

and Error; 4 represent the estimates of the relevance of the announcement and
of the error induced by the flat term-structure assumption respectively. b;, represents the
true error induced by the flat term-structure assumption and u and v are measurement errors

independent of each other and independent of afrTiJZUE . Then, the estimator in the first column

of Table D.2 corresponds to:

cov(ag?;’];UE, big) + Var(b;q)

Var(big) + Var(vig)

If the bias and the true relevance are uncorrelated, the estimate is the signal-to-noise ratio of
our estimator for the error induced by the flat term-structure assumption. Consequently, 66%
of the variation of our estimator would correspond to variation of the error due to the flat-term
structure. Once we eliminate the variation across firms and quarters through the fixed effects,

and outliers, 107% of the variation of our estimator would correspond to variation of the error

2Dubinsky et al. (2019) varies significantly depending on how we aggregate. In Figure 3 of the paper we use
the average across firms or years. The former weights more recent years while the later weight more firms with
more liquid options. This selection explains the difference between the figure in the paper and the results in this
table.
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due to the flat-term structure. If the error due to the flat-term structure and the true relevance
are positively (negatively) correlated, 107% is an upper (lower) bound of the variation of our
measure corresponding to the bias. Unfortunately, without observing the true relevance, we
cannot estimate this correlation. Nonetheless, in any case, if the error due to the flat-term
structure is a constant or our estimator is pure noise, the parameter estimate of the regression
will be zero.

Table D.1: Summary statistics Dubinsky et al. (2019) and bias at the firm-quarter level

2DJKS

s

and Error. 072r DJKS

This table present the date-firm level summary statistics of o
is the measure of informativeness by Dubinsky et al. (2019) as described in Section I

Error is _our estimate of the bias of their measure estimated as described in Section D.

Obs Mean std P10 P50 P90
Option-level
Error 1221125 -0.065 1.131 -0.390 -0.017 0.249
g2DJKS 643183 0.160 2.037 -0.563 0.116 1.048

™

Day-firm level (mean)

Error 443612 -0.119 0.705 -0.374 -0.044 0.093
g2DJKS 312555 0.001 1.769 -0.566 0.055 0.720

™

Announcement level (mean)

Error 17643 -0.150 0.518 -0.404 -0.065 0.051
Rel.Error 14351 -4.116 2804.935 -118.053 2.062 150.108
o2DJKS 17138 -0.018 1.389 -0.539 0.034 0.590

Announcement level (median)

Error 17643 -0.153 0.479 -0.393 -0.066 0.027
Rel.Error 14351 -49.694 4485.859 -124.810 -0.142 152.884
o2DJKS 17138 0.005 1.204 -0.476 0.043 0.575
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Table D.2: Validation of our bias measure
This table presents the results of the regression:

JT%DJKSW =+ 6q+ BError; ¢+ €;q

where «; and §, are firm and quarter fixed effects, 02 P/KS is the median measure of informativeness
by Dubinsky et al. (2019) as described in Section I. Bias is our estimate of the bias of their measure
estimated as described in Section D. Rel. Bias corresponds to the ratio between Bias and o2P7KS,
Standard errors are computed using Huber-White formula and presented in parentheses. Table 6 describes

the variables. *, ** and *** indicates statistical significance at the 10%, 5%, and 1% level respectively.

Dep. var.: Dubinsky et al. (2019) (1) (2) (3) (4)

0.668*** 0.586*** 0.419** 1.072%*
Error

(0.134) (0.155) (0.166) (0.308)

. . Quarter Quarter

Fixed effects No Firm & firm & firm
Rel Error support (—00,00) (—00,00) (—00,0) (-1,1)
Adjusted R2 0.057 0.120 0.170 0.237
Obs. 14,351 14,320 14,320 10,559
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E Functional form

We acknowledge that the functional form of the term structure that we consider is arbitrary.
In this section, we assess the fit of the functional form and the consequences of alternative
functional forms. Because our estimation strategy requires a model that is linear in parameters,

we consider the term structure can be represented by:

M M
Sit+ > Am(T=1)% + Y (T —tr)"
m=1 m=1

where ;¢ is the firm-date fixed effect, T" is the expiration date, and ¢r is the time of the
announcement. The case in the main text is M =n = 2.

The first panel of Table E.1 considers a reduction to one polynomial term and extensions
to three or four terms (0 < M < 4) while keeping n = 2. The biggest impact is when we only
consider one polynomial term. In this case, the estimated informativeness decreases from 2.37
to 2.31, and the R? drops from 95.33% to 95.30%. Extending the polynomial barely affects the
estimate and R2. Therefore, we choose M = 2 for the sake of parsimony. Then, we consider if
the functional form might affect the results. The second panel of Table E.1 fixes M = 2 and

considers the term structure can be represented by:

m
n

Sis + AM(T =) + Ao(T — )% +0y(T — tr) % + 0o(T — tg)

for all possible combinations of n € N and m € N such that 0 < n <4 and 0 < m < 4, which
includes the quadratic polynomial (m = 2,n = 1). The results are very similar across functional
forms.

The lack of relevance of the functional form derives from the identification strategy. Our
model hinges on comparing options before and after the announcement; therefore, as long as
the functional form captures the average of each of these two option groups appropriately, the
results will be similar. Moreover, since we restrict our sample to options expiring in fewer than

90 days, low-degree polynomials capture the differences across maturities.
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Table E.1: Fit of the term-structure functional form

This table reports the results of the regression shown in Equation (2) using different functional forms for
the term structure. Panel A considers the following functional form:

M M
it + D Am(T =)+ > 0(T —tg)™
m=1

m=1

for different values of M. Panel B considers the term structure follows:

m
n

51'715 + )\1(T - t)% + )\Q(T - t)% + 91(T — tR)%L + 02(T — tR)
For different values of n and m. The baseline is m = n = 2. Adjusted-R? are presented in parenthesis.
Extending the polynomial (n = m = 2)
(7) 2.256 2.375 2.404

1(T>tR)T—t

Adjusted — R? (94.912)  (94.972)  (94.996)

Different Polynomials (M = 2)

n=1 2.344 2.339 2.337
(94.963)  (94.962)  (94.961)

n=2 2.363 2,349 2.337
(94.969)  (94.966)  (94.962)

n=3 2.379 2.367 2.355
(94.974)  (94.971)  (94.968)

n=4 2.387 2.379 2.369
(94.977)  (94.974)  (94.972)
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F Actual versus expected earnings announcement dates

Our analysis rests on the implicit assumption that market participants know the earnings an-
nouncement dates with sufficient precision, so they can know which options are treated and
which are not. In line with this assumption, Johnson and So (2018) show that options react
to changes in the earnings announcement date. Market expectations about the announcement
date are not observable directly, so instead we need to rely on a proxy. In our main analysis we
use the actual earnings announcement dates as such proxy. This decision creates a concern for
insider trading as managers might have private information about the earnings date and transact
accordingly or they might displace the earnings date to transact over more days reducing the
price impact.

Typically, market participants are informed about the earnings announcement date via so-
called earnings notifications. These notifications are mandatory since Reg FD became effective in
2001. However, most earnings notifications occur relatively close to the earnings announcement
date, approximately 10 trading days (see Chapman (2018)). Market participants are likely to
have formed expectations about the timing of the next earnings announcement date even before
the official earnings notifications. In our analysis we analyze up to 90 calendar days before the
next earnings announcement. Even if we precisely know the date of the earnings notification, we
would need a proxy for market expectations in the remaining time, which represents the bulk
of our sample.

In the extreme event that earnings announcement dates are unpredictable, we would not
expect that the earnings announcement produces a wedge in implied volatility between options
maturing before or after the next earnings announcement. In the event that earnings announce-
ment dates are fairly predictable, the actual announcement dates would be a reliable proxy
for the expected dates. We evaluate the plausibility of this assumption in the following and
investigate the sensitivity of our findings with respect to this assumption.

First, we examine the deviation between the expected and the actual earnings date. We
estimate expected earnings announcement dates based on the current year’s end of the fiscal
quarter and add the number of business days between the end of the fiscal quarter and the
earnings announcement date from the same quarter of the firm’s last fiscal year. Table F.1

summarizes the deviation from the actual earnings announcement date and the expected date
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for each quarter, and the average across a given firm year. The deviations between the expected
and the actual earnings announcement dates are small, as the mean value is 0. Even the top and
bottom 10% are small with values of -2 and 4. We cross-tabulate the number of options classified
as ‘treated’ and ‘control’ under either the expected or the actual earnings announcement dates.
Given these small deviations, it is not surprising that the treatment status assigned to daily
option observations that depends on whether a given option expires before or after the next
earnings announcement date does not change much irrespective of whether we use the expected
or the actual earnings announcement dates. As shown in Table F.2 the majority of option days,
to be precise 97.7%, that are classified as treated under expected earnings dates would also be
classified as treated under the actual earnings dates. Similarly, 98.4% of option days classified
as control according to expected dates would be classified as such according to the actual dates.

Second, we use expected instead of actual earnings announcement dates as a further robust-
ness check. Table F.3 shows the results using the expected earnings announcement dates. We
find similar estimates estimate for the signals by analysts and insiders, though we note that
the economic magnitudes of recommendations are larger and the magnitude of insider buys is
smaller.

Table F.1: Summary statistics

This table shows the summary statistics for the number of business days between the expected earnings
announcement date and the actual earnings announcement date. The expected earnings announcement
date is calculated as the the current year’s end of the fiscal quarter plus the number of business days
between the end of the fiscal quarter and the earnings announcement date from the same quarter of the
firm’s last fiscal year.

Variable Obs. Mean S.D. 10pct 50pct 90pct
Deviation Q1 4,273 0 3 -2 0 4
Deviation Q2 4,080 0 3 -2 -1 4
Deviation Q3 4,351 0 3 -2 -1 4
Deviation Q4 4,247 0 4 -2 0 4
Mean firm-year deviation 3,201 0 2 -2 -0 2
Mean absolute firm-year deviation 3,201 2 1 1 2 4

3The number of observations decreases because we do not observe the deviation for the first year in the sample,
and because some earnings announcements could be missing.
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Table F.2: Treatment under actual and expected earnings announcements

This table tabulates the number of daily options that are treated, as they expire after the next earnings
announcement, and control, as they expire before the next earnings announcement, based on actual and
expected earnings announcement dates.

Control (expected) % Treated (expected) % Sum
Control (actual) 1,662,160 98.4% 22,268 2.3% 1,684,428
Treated (actual) 26,388 1.6% 964,384 97.7% 990,772
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Table F.3: Expected versus actual earnings announcement dates

This table shows the results of a regression of implied volatility on corporate insider purchases and sales.
The treatment status of option day observations is based on expected earnings announcement dates rather
than the actual dates. Column 1 shows the results of a regression of implied volatility on the square root
of the time to maturity interacted with a dummy variable indicating whether the option expires before
the next earnings announcement and a dummy variable that is Columns 2 to 4 add different sets of fixed
effects or control variables. Maturity pol. refers to controlling for the time to maturity of the option
measured in years and its square root as well as the interaction of the linear and the square root term
with the insider buy or sell variables. Standard errors are clustered at both the day and the firm-quarter
level and presented in parentheses. Table 6 describes the variables. *, ** and *** indicates statistical
significance at the 10%, 5%, and 1% level respectively.

Dep. var.: implied vol. (1) (2) (3) (4)
1(T > tr) 2277 2.303*** 2.416*** 2.296***

T—t (0.031) (0.034) (0.036) (0.039)
1(T >t -0.057*** -0.051%** -0.051%**
1T >tr) x Forecast™

T—1 (0.007) (0.007) (0.007)
1(T > tgr) _ -0.070*** -0.064*** -0.055***
——— = X Forecast

T—t (0.005) (0.005) (0.005)
1(T > tr) -0.116™** -0.092%** -0.103***
—— " x Recom™

T—1 (0.018) (0.018) (0.018)
1(T > tgr) _ -0.125*** -0.083*** -0.078***
————= X Recom

T—t (0.020) (0.020) (0.020)
1(T >t -0.087***
1(T>tr) x Buys

T—1t (0.025)
1 i kokxk

(T > tg) « Sales 0.051

T _ ¢ (0.006)
Maturity pol. Yes Yes Yes Yes
Signal x maturity pol. Yes Yes Yes Yes
Learning pol. Yes Yes Yes Yes
Fixed effects Day x firm Day x firm Day x firm Day x firm
Ajusted R2 0.943 0.943 0.943 0.943
Obs. 2,762,767 2,762,767 2,762,767 2,762,767
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G Extended Model

In the model in equation (1), we assume a constant volatility of the announcement jump for
simplicity and to ease the comparison with alternative models. However, investors might expect
information about the announcement before it occurs and the volatility might depend on the
time to the next announcement. In particular, investors might expect analyst forecasts or insider
transactions, and consequently, changes in stock price and the informativeness of the variance.
In this section, we extend the model to include these dynamics of prices although limiting the
analysis to a simple model.
Consider the price follows a simplified version of Merton’s jump-diffusion process:

dP(t)
P(t-)

=r(t) + odW (t) + BdJ(t) + w1{t = tr}

where J(t) is a Poisson process with intensity A up to the announcement date (tz) and remains
constant thereafter. 8 is constant and represents how much prices move when there is a signal
prior to the earnings announcement. We assume that the jump size on the announcement date

2
is distributed according to a normal distribution: 7= ~ N( g”,ag

), in which the expectation
ensures that the process is a martingale. Meanwhile, the variance itself is subject to Poisson
jumps of size 6:

do? = i+ 0dJ(t)

Note that the process is subject to the same counting process as before reflecting that signals
such as a positive analyst forecast revision affect the variance of the announcement but also the
price of the asset. Including more Poisson processes in the price equation or adding a diffusion
term to the dynamics of o2 do not change the conclusions and complicate the expressions. Using
other processes for o2 to ensure non-negativity (e.g. exponential) mainly change the functional
forms.

In this model, the scaled risk-neutral variance is given by:

th—t
T3 +V(7T)>
1

where V(m) = 1 A0?+ i+ A6. Note that we control for a polynomial in (tz—t) and another one in

tp—t 1
IV? =02+ /\u;_t + 1{T > tg} <—295/\

(T' —t), and the interaction with their treated variable 1{T" > ¢, }. Therefore, we identify V().

We use the learning polynomial based on (tp — t) instead of % because it mimics the other

26



polynomial and the factor % depends on the model we choose (e.g., an exponential model

for the variance of the announcement would lead to a different functional form). Nonetheless,
we re-estimate our main analysis in Table 5 using a polynomial on % and results are almost

identical. Table G.1 presents the results.
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Table G.1: Earnings information disclosed by other signals

This table reports the results of the regression shown in Equation (3).
is twice the log of implied volatily.

The dependent variable
Buys (Sales) is the number of days with net buying (sell-
ing) by corporate insiders since the last EA. Forecastt (Forecast™) is the number of upward
(downward) forecast revisions since the last EA. Recom™ (Recom™) is the number of upward
(downward) recommendation revisions since the last EA. Standard errors are clustered at both
the day and the firm-quarter level and presented in parentheses. Table 6 describes the vari-
ables. *, ** and *** indicates statistical significance at the 10%, 5%, and 1% level respectively.

Dep. var.: implied vol. (1) (2) (3) (4)
1(T > tg) 2.475%" 2.369"** 2.548%* 23747

Tt (0.030) (0.035) (0.035) (0.039)
1(T >t -0.050"** -0.048*** -0.048***
(T >tr) x Forecast™

T—t (0.006) (0.006) (0.006)
1 T -0. kokk -0. 4*** -0. 4***

(T > tg) « Forecast- 0.067 0.06 0.05

T—1 (0.004) (0.004) (0.004)
1(T > tr) -0.050*** -0.028* -0.043***
————- X Recom™

Tt (0.016) (0.015) (0.015)
1(T > tr) _ -0.095*** -0.058*** -0.052***
————= X Recom

T—1 (0.017) (0.017) (0.016)
1(T -0.110***
7( > tr) X Buys 0-110

T—t (0.022)
1 X 4***
1T >1tR) g 0.05

T—1 (0.004)
Maturity pol. Yes Yes Yes Yes
Signal x maturity pol. Yes Yes Yes Yes
Learning pol. (fraction) Yes Yes Yes Yes
Fixed effects Day x firm Day x firm Day x firm Day x firm
Ajusted R2 0.950 0.950 0.950 0.950
Obs. 3,039,877 3,039,877 3,039,877 3,039,877
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H Falsification exercise

We acknowledge that the asymptotic distribution of the estimator that we use in the paper
assumes that the firm-date fixed effects and the two-way cluster variance correctly take into
account the time series properties of the implied volatility process. If the implied volatility of
different maturities do not share a cointegration relationship or if the measurement error of the
implied volatility is highly persistent, our inference would be incorrect. Similarly, we base our
analysis on an asymptotic approximation, which might be problematic when using the two-way
cluster variance if the within-cluster correlation is high with respect to the number of clusters
(Villacorta, 2015).

To tackle these issues, in this section we obtain the finite-sample distribution of our estimators
under the null hypothesis that the signals are uninformative. Since we would like to maintain
the properties of the implied volatility across time, we keep the sample implied volatility and the
distribution and timing of the signals, and we randomly assign upward and downward signals
to trading days, keeping the respective number of upward and downward signals for each agent
we consider fixed. For example, in Panel A we randomize upward and downward forecasts
by analysts, while maintaining the actual occurence of all other signals. For each signal, We
repeat the process 1,000 times to create 1,000 placebo samples. These samples closely represent
samples in which the signals have no effect on earnings announcement informativeness by design.
Hence, applying our estimation in each sample, we recover the finite-sample distribution of our
estimator under the null hypothesis. The advantage of this approach compared with bootstrap
or parametric simulation methods lies in the possibility of maintaining the complete correlation
structure of implied volatility over time and across firms. The main disadvantage consists of
the small tilt towards our estimates that the empirical distribution will have; nonetheless, this
disadvantage works against validating our approach.

Figure H.1 shows the empirical distribution under the null hypothesis of the baseline esti-
mators, 7’; and ,;i The blue dotted lines in the graphs show the actual estimates presented in
Table 5. For all simulated signals, the mean values of ;J\F and 7/: are close to zero. We find that
the simulated estimates are substantially smaller than the estimates based on the actual data in
Table 5. For example, for analyst forecasts the mean value of ;J\F is -0.008, while the mean value

of ? is -0.008. These values are much smaller than the estimates we observe for the actual
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timing of analyst forecast revisions. More importantly, the p-value of our actual estimates using
the simulated distribution is zero for all signals, consistent with the high significance that we

report in the main analysis.
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Figure H.1: Simulated distribution under the null of uninformative signals

This figure shows the estimates of ¥y (left graph) and v~ (right graph). The dots are based on simulating
the upward and downward signals for each type of signal 1,000 times and repeating the analysis of Table
5, while keeping the remaining actual distribution of the other signals. The black crosses indicate the
respective mean value of W/J\F and 'F, while the distance from the mean to the dotted lines show one
standard derviation. The dashed blue line shows the actual estimates from Table 5 in the main paper.
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I Comparison with other informativeness measures

One of the contributions of the paper is to suggest an exante measure of earnings announcement
informativeness that varies at a daily frequency and is valid under mild assumptions. In Figure
3, we compare our measure of earnings announcement informativeness with alternative measures
across different firms and across different years. In general, every measure correlates significantly
with our proposed measure and they share the same time-series pattern, which provides support
to our measure. This section describes how we construct each measure.

To construct our measure, we estimate the following regression equation using the 90 days
prior to each announcement:

2
; 1
ln(IVi?t,T) = Mt + E 1 )\?(T — t)J/2 + ")/a]. (T > tRi’t) ﬁ + Eit, T
j=

where subscripts ¢, ¢, T denote firm, time, and maturity; and the superscript a emphasizes that
we estimate it per firm (scatter plot) or per year (line plots). IV is the nonparametric risk-
neutral volatility estimator proposed by Bakshi et al. (2003), tg is the day of the announcement,
and v is the average informativeness of the earnings announcement as a proportion of the annual
variance. Note that this modeling is much more general and robust than the baseline model
because it considers a different term structure ()\31) per firm or year. Yet, the results are very
similar.

As explained in the main paper, Patell and Wolfson (1981) propose measuring the informa-
tiveness of the announcement by exploiting the time-series variation of implied volatility before

the announcement. Precisely, the estimator is given by:

IO/ T
mPW (T — tQ)_l — (T — tl)_P

(tl <ty <tpand T > tR).

To implement it, for each day and maturity, we compute the weekly change in OptionMetrics
implied variance of the at-the-money options. Then, we average across all days and maturities
to obtain the scatter plot and across all days in a given year and all maturities to obtain the line
plots. We use weekly changes and the OptionMetrics estimator to follow PW; however, these
decisions are not crucial. Finally, &72“ pw Mmeasures the informativeness in absolute terms instead
of relative to the annual variance; hence we normalize the estimator by dividing it by the mean

of the implied variance of options that expire before the earnings announcement.
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Dubinsky et al. (2019) propose a similar estimator using the term structure:

I‘/;?Tl - I‘/t?TQ

2
= tr <11 <15).
O’7r,DJKS (Tl — t)_l — (T2 — t)_17 ( R 1 2)

In this case, for each day we compute the difference between the at-the-money OptionMetrics
implied variance of each option and the one with a longer maturity as long as both maturities
are posterior to the announcement. We then average across maturities and days for a given
announcement. Similar to the previous case, we normalize the estimator by the implied variance
of options that expire before the earnings announcement.

Beaver et al. (2018) construct a test of significance of earnings announcement whose intuition

closely relates to our definition of informativeness. We follow their procedure:

1. We create an estimation period of 130 days before the announcement until 10 days before,

and 10 to 130 days after the announcement.
2. We aggregate the data to 3-days cumulative returns.

3. We estimate the market model using the S&P500 as benchmark and data of the estimation

period.

4. We construct the abnormal return as the cumulative return from the day before to the

day after the announcement minus the predicted return from the market model.

5. We construct the U-statistic as the squared abnormal return over the residual variance of

the market model in the estimation period.

Finally, we subtract one to make it comparable to the other measures. The interpretation is
similar to our « since it is the ratio of the squared abnormal return on the announcement
date over the idiosyncratic variance. The main difference is that this measure focuses on the

idiosyncratic part while ours is the ratio of the total variance of returns.
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J Event study analysis

The analysis in the main paper uses the whole time series of each firm to estimate the effect of
each signal, e.g. insiders’ sales and buys. The benefits of this approach are threefold. First, we
obtain more precise estimates by including more data. Second, we account for the correlation
across signals. Third, the model accommodates downward and upward signals of the same stock
in subsequent days. In an event study jargon, the pre-event period length varies depending on
the timing of the last signal and, similarly, the post-event window length widens as the next
transaction delays.

Compared to an event study analysis, our main analysis also owns several disadvantages.
First, we implicitly assume that the effect of two upward signals doubles the effect of one.
Second, we consider that our measure of informativeness remains similar across days and firms.
These concerns are important if there is a spurious correlation between the informativeness of
the earnings announcement and the propensity of insiders to buy or sale. For instance, if in the
2000s we had less sales and less earnings informativeness than in the 2010s, we would erroneously
conclude that sales increase the earnings informativeness.

Our main analysis also differs from an event study in the estimated effect that we recover.
Consider for example downward forecast revisions. Moreover, consider that the effect of those
revisions varies across firms and days. Because we use a panel data of options, the average
effect we recover does not weight equally all firms and days with the same number of downward
revisions. Instead, firms and days with more options would have a higher weight. This feature is
an advantage if the effect of downward revisions is similar because we put more weight on those
firm-days for which our identification is more suitable. However, if prior downward forecast
revisions affect firms or periods with more options differently, our estimates would not reflect
the average effect of downward revisions.

To take into account the different frequency of signals across firms and dates and ensure that
our results are not driven by these differences, we estimate the same model using an event study
approach. Precisely, we identify the date of each signal (e.g., of an insider transaction) as 7 =0
and include the implied volatility of the firm transacted only for the days in the final sample
such that |7| <7 = 10 We explore 7 € {1,2,5,10} and the conclusions are similar. Then, we

estimate by OLS:
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1{T > tR”}

2 I‘/:ia 7T :667'
0g(IVey 7. T) = o+~

< + {7 > 0}( E v AUpward? + v, ADownward® ))
(1)
+ E :)\j(T—t)]/er > 0;(tr—t)"?

jfl

HT >t
{ Rl 3 Z Z Aaj(T —t J/2(Z M AUpward? + A\, ADownward?) + €c -

a j=1 a
(2)
where e indexes the events and 7 is the event time. ADownward? is a dummy variable that
takes the value one if the event is a negative signal (e.g., an insider sale) and zero if it is a a
positive signal (e.g., an insider purchase). Recall that T" is the maturity of the option, tp is the
announcement date in calendar time, and ¢ is the calendar time that corresponds to event e and
event time 7. We cluster the standard errors at the firm and calendar date levels.
Table J.1 presents the results. We observe that results are stronger than in the main paper.
A significant part of this difference arises because there are signals in the estimation window that
we disregard because of the setup. However, the difference might also be due to the weighting
difference we describe before or they arise from a better or worse fit of the term structure, a
different composition of firms in terms of option liquidity, or the dynamic effect in which one

signal leads or lags another one.
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Table J.1: Earnings information disclosed by other signals - Event Study analogy

This table reports the results of the regression shown in Equation (3). The dependent variable
is twice the log of implied volatily. Buys (Sales) is the number of days with net buying (sell-
ing) by corporate insiders since the last EA. Forecastt (Forecast™) is the number of upward
(downward) forecast revisions since the last EA. Recom™ (Recom™) is the number of upward
(downward) recommendation revisions since the last EA. Standard errors are clustered at both
the day and the firm-quarter level and presented in parentheses. Table 6 describes the vari-
ables. *, ** and *** indicates statistical significance at the 10%, 5%, and 1% level respectively.

Dep. var.: implied vol. (1) (2) (3) (4)
1(T > tgr) 0.906*** 0.807*** 0.979*** 0.899***

Tt (0.160) (0.166) (0.143) (0.134)
1(T >t -0.080*** -0.131** -0.209***
1T >tr) x Forecast™

T—t (0.022) (0.022) (0.023)
1 T _ .1 kokk _ ‘2 kskok -0. 1 kkok

(T > tg) « Forecast- 0.189 0.238 0.313

T—1 (0.020) (0.021) (0.023)
1(T > tr) 0.025 0.181*** 0.097***
————- X Recom™

Tt (0.027) (0.030) (0.030)
1(T > tr) _ -0.125%** 0.048 -0.027
————= X Recom

T—1 (0.030) (0.032) (0.032)
]— T -0. kkk
LT >tR) o puys 0.375

Tt (0.116)
1 X kkk

(T > tg) « Sales 0.518
T (0.037)
Maturity pol. Yes Yes Yes Yes
Signal x maturity pol. Yes Yes Yes Yes
Learning pol. Yes Yes Yes Yes
Fixed effects Day x firm Day x firm Day x firm Day x firm
Ajusted R2 0.949 0.951 0.949 0.950
Obs. 2,330,713 1,164,230 3,290,033 5,063,366
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K Tables underlying figures

Table K.1: Insider Position (Figure 4)

This table shows the estimates and standard errors wused to construct Figure 4 in

the main paper. Standard errors are clustered at both the day and the firm-
quarter level and presented in parentheses. Table 6 describes the variables. KKK
and *** indicates statistical significance at the 10%, 5%, and 1% level respectively.
Dep. var.: implied volatility (1)
Officer x1 (T > tg) (1/7 —t) CBuys 0.015
(0.054)
Officer x1 (T > tr) (/7 —t) CSales 0.047**
(0.005)
Director x1 (T > tg) (}/T —t) CBuys -0.194***
(0.032)
Director x1 (T > tg) (}/7 —t) CSales 0.046***
(0.013)
Beneficial owner x1 (T > tg) (/7 —t) C Buys -0.110**
(0.030)
Beneficial owner x1 (T > tg) (1/7 —t) CSales 0.017
(0.024)
Other x1 (T > tg) (1/r —t) C Buys -0.380
(0.267)
Other x1 (T > tg) (Y/r—t) CSales 0.001
(0.050)
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Table K.1: Insider Position (Figure 4) continued

Difference in coefficients

Buys: officer - director 0.209***
F-value (9.66)
Buys: officer - beneficial owner 0.125*
F-value (3.39)
Buys: officer - other 0.395
F-value (2.05)
Buys: director - beneficial owner -0.084 *
F-value (3.73)
Buys: director - other 0.186
F-value (0.48)
Buys: beneficial owner - other 0.270
F-value (1.01)
Sales: officer - director 0.001
F-value (0.01)
Sales: officer - beneficial owner 0.030
F-value (1.47)
Sales: officer - other 0.046
F-value (0.82)
Sales: director - beneficial owner 0.029
F-value (1.10)
Sales: director - other 0.029
F-value (0.76)
Sales: beneficial owner - other 0.016
F-value (0.08)
Maturity Pol. Yes
Signal x maturity pol. Yes
Learning pol. Yes
Fixed effects Day x firm
Adjusted R2 0.950
Obs 3,039,877
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Table K.2: By months to EA (Figure 5)

This table shows the estimates
els D-F in the main paper.

firm-quarter level and presented

**’ and %k

indicates statistical

in parentheses.

used to construct Figure 5 Pan-
Standard errors are clustered at both the day and the
Table 6 describes the variables. *
significance at the 10%, 5%, and 1% level respectively.

Dep. var.: implied volatility (1)
Im x1(T > tg) (Y/r —t) CBuys -0.184***
(0.071)
Im x1(T > tg) (YT —t) CSales -0.084***
(0.015)
2m x1 (T > tg) (Y/r —t) CBuys -0.233***
(0.041)
2m x1 (T > tg) (}/7 —t) CSales 0.027*
(0.012)
3m x1 (T > tg) (/1 -t) CBuys -0.035
(0.037)
3m x1 (T > tg) (/T -+t) CSales 0.112***
(0.009)
Difference in coefficients
Buys: month 1 - month 2 0.049
F-value (0.33)
Buys: month 1 - month 3 -0.149*
F-value (3.14)
Buys: month 2 - month 3 -0.198***
F-value (10.47)
Sales: month 1 - month 2 -0.1171%**
F-value (23.59)
Sales: month 1 - month 3 -0.196"**
F-value (103.53)
Sales: month 2 - month 3 -0.085***
F-value (24.17)
Maturity Pol. Yes
Signal x maturity pol. Yes
Learning pol. Yes
Fixed effects Day x firm
Adjusted R2 0.951
Obs 3,039,877




L. Alternative measures of earnings informativeness and prior
signals

Figure 3 shows that our measure of earnings announcement informativeness correlates signif-
icantly with previous measures proposed in the literature. Some of these measures (PW and
DJKS) are daily and ex-ante measures. As a consequence, we can use them to test the effect of
signals observed before the announcement and check if our main results emanate from our new
measure and estimating method or whether they are robust to other measures. As mentioned
before, these measures implicitly assume a flat term structure and are computed just using the
information of a given firm-day. Although, at first sight, the last feature looks like an advantage,
in practice, it leads to very noisy measures of earnings announcement informativeness as we ob-
serve in Table L.1 in which we present the summary statistics of the two alternative measures.
For instance, DJKS and PW estimates of earnings informativeness are negative more than 25%
of day-firm pairs. We can see in Figure 3 that when aggregated at the firm or yearly level, they
are mostly positive as the original papers show.

We construct these measures as described in Section I with the only exception of the measure
proposed by PW for which we have changed the weekly change to a daily change to have a
more timely measure of earnings informativeness. The unit of observation is the duple firm-day
although some measures cannot be computed everyday. More precisely, the normalized measured
by PW requires options that mature before and after the announcement, which constitutes a
likely scenario. Additionally, the method by DJKS requires another option that matures after
the announcement. Since we consider options with maturity below 90 days, days with two
options maturing after the announcement and one before are far less common; hence, number
of observations is lower. Likewise, there is a selection issue since three months before the
announcement we cannot compute DJKS measure and we know the effect of the signals differ
depending on the distance to the earnings announcement (see Figure 5 of the main paper).

Once we have the different daily measures of informativeness, which we label v*W and

yPIKS e estimate the following equation by OLS:

'Y]]‘;i,tﬂ — ’yj]-;mfl =a;+ Z Vo ADownwards, + ’y;jAUpwardit + 5]"7;;@',1‘,71 +ejut (3)
a

where the j subscript indicates which of the methods we consider (PW and DJKS) and the
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Table L.1: Summary Statistics Alternative Measures (daily)

This table presents the summary statistics of the alternative measures of earnings announcement infor-
mativeness proposed by Dubinsky et al. (2019) (DJKS) and Patell and Wolfson (1979) (PW). These
methods require a measure of implied volatility as input and we consider two nonparametric and one

parametric.
Estimator Obs Mean S.D. P10 P50 P90
DIKS 162,948 1.158 10.426 -9.129 2.128 10.272
APW 370,206 -3.451 128.180 -112.827 1.131 100.551

subscripts ¢ and t refer to the firm and trading date. AUpwardﬁt is a dummy variable that
takes the value 1 if agent a produces a positive signal, for instance if buys by corporate insiders
of firm ¢ reported on date t exceed, in value, sales by corporate insiders of the same firm reported
on the same date. We purposely use a similar notation for the coefficient of these variables as the
one for our main parameters in the main paper to emphasize their similarity. Concretely, 'y;.' ('yJ_)
represents the change in the proportion of variance explained by the next earnings announcement
attributed to an insider buy (sale). Lastly, if the informativeness of the announcement is not an
integrated series of order one, the past level of informativeness affects the growth. We add the
lag of the corresponding measure to control for this mechanism generated by mean-reversion.
Table L.2 presents the effect of the different signals. We observe that results are non robust.
They not only change when we include the lag of the earnings informativeness but they also
change from one measure to the other. The only significant result with both measures is the

effect of insider sales.
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Table L.2: Baseline Results using Alternative Measures

This table presents estimates of Equation (3) using the two alternative measures of earnings announcement
informativeness proposed by Dubinsky et al. (2019) (DJKS) and Patell and Wolfson (1979) (PW). The
implied volatility is computed using Bakshi et al. (2003). Standard errors are clustered at both the day
and the firm level and presented in parentheses. *, ** and *** indicates statistical significance at the

10%, 5%, and 1% level respectively.

(1) (2) (3) (4)
Estimator DJKS PW DJKS PW

Dep. var: Nonparametric implied volatility (Bakshi et al., 2003)

Constant 0.567 -4.305** 0.615*** -4.634**
(5.270) (2.130) (0.051) (2.121)
AFore™ -0.149 0.106 -0.135 -0.101
(0.104) (2.026) (0.106) (2.045)
AFore~ -0.179 -2.859 -0.144 -2.706
(9.307) (2.061) (0.093) (2.064)
ARecom™ 0.264* -1.408 0.247 -2.024
(0.157) (3.352) (0.159) (3.330)
ARecom™ -0.081 0.974 -0.072 1.525
(0.153) (4.008) (0.155) (4.063)
ABuys -0.166 10.763 -0.213 10.152
(72.315) (12.567) (0.731) (12.605)
ASales 0.137 5.190** 0.173 5.383**
(11.131) (2.235) (0.113) (2.237)
Lagged Relevance No No Yes Yes
Ajusted R2 0.000 0.000 0.004 0.000
Obs. 81,312 188,235 80,272 187,244
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M Unobserved heterogeneity in earnings announcement infor-
mativeness

In the main paper, we exploit the variation in announcement informativeness across firms and
quarters. Nonetheless, it is possible that some of this variation is spurious. One robustness check
we implement to support our finding is to estimate the model using an event study (Section J).
In this section, we take a different approach by maintaining the same model but adding firm
and fiscal quarter heterogeneity. Since the results are qualitatively the same, we exclude the
heterogeneity from the main model because it adds another layer of complexity, which seems
unnecessary. Moreover, there is no obvious reason why the number of insider trades would
be higher for firms with high (or low) announcement informativeness besides the channels we

propose in the main paper.
M.1 Firm heterogeneity

The first heterogeneity we consider is across firms. To implement this estimation, we estimate
1

Equation (3) of the main paper but we interact the informativeness term <1 (T >R, t) (T—t))
with firm-fixed effects. This specification provides an extra burden to the identification; nonethe-
less, the main conclusions of the analysis remain unchanged. We note that the economic mag-
nitude of the effects of analysts forecasts and corporate insiders drops. Unfortunately, this

specification does not allow to compute the proportion of informativeness that increases or

decreases with the trades because the benchmark is firm-specific.
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Table M.1: Earnings information disclosed by other signals: Firm heterogeneity

This table reports the results of the regression shown in Equation (3) complemented with the

T-—t
pendent variable is twice the log of implied volatily. Buys (Sales) is the number of days with net

1
interaction of the informativeness term (1 (T >tg,,) | =—— > and firm-fixed effects. The de-

buying (selling) by corporate insiders since the last EA. Forecastt (Forecast™) is the number
of upward (downward) forecast revisions since the last EA. Recom™ (Recom™) is the number of
upward (downward) recommendation revisions since the last EA. Standard errors are clustered
at both the day and the firm-quarter level and presented in parentheses. Table 6 describes the
variables. *, ** and *** indicates statistical significance at the 10%, 5%, and 1% level respectively.

Dep. var.: implied vol. (1) (2) (3) (4)
1(T >t -0.018*** -0.011* -0.013**
1T >tr) x Forecast™

T-—t (0.006) (0.006) (0.006)
1(T > tr) _ -0.035*** -0.028** -0.026***
————= X Forecast

T—1 (0.004) (0.004) (0.004)
1(T > tr) n -0.072%** -0.068"** -0.066***
———~ X Recom

T—t (0.011) (0.011) (0.010)
1(T > tr) _ -0.085"** -0.075"* -0.070***
——— = X Recom

T—1 (0.020) (0.020) (0.020)
1(T >t -0.038***
M X B’LLyS

T—1 (0.014)
1(T 0.020%**
1T >tr) g

T-—1t (0.004)
Maturity pol. Yes Yes Yes Yes
Signal x maturity pol. Yes Yes Yes Yes
Learning pol. Yes Yes Yes Yes
Firm x info. Yes Yes Yes Yes
Fixed effects Day x firm Day x firm Day x firm Day x firm
Ajusted R2 0.954 0.954 0.954 0.955
Obs. 3,039,877 3,039,877 3,039,877 3,039,877
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M.2 Fiscal quarter heterogeneity

The second dimension of heterogeneity we consider is across fiscal quarters. The information
content of fourth-quarter announcements might differ from interim announcements, because, for
example, more information is released together the full fiscal year results. Conversely, interim
quarter results are typically released in a more timely fashion. Further, differences can also
arise because of greater manager discretion over interim-period cost formulations, potentially
allowing them to defer bad news (e.g., Mendenhall and Nichols, 1988). Table M.2 splits the
analysis by fiscal quarter and indicates that the main effects persist within each of the four
quarters. The only notable difference we observe is that downward analyst recommendations
are more informative about earnings in the fourth quarter relative to interim quarters, as the

economic nearly doubles.
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Table M.2: Trades by insiders and the informativeness of earnings announcements

This table shows the results of the regression on column (3) of Table 3 in the main paper where we split
the sample into interim quarters and the fourth quarter. Standard errors are clustered at both the day
and the firm-quarter level and presented in parentheses. Table 6 describes the variables. *, ** and ***
indicates statistical significance at the 10%, 5%, and 1% level respectively.

Dep. var.: implied vol. (1) (2)
Quarter Interm Fourth quarter
1(T > tg) 2.427%* 2.615%*

T—t (0.038) (0.061)
1(T >t 10.048"* 0,057+
1T >tr) x Forecast™

T—t (0.007) (0.010)
1T -0.058** ~0.052++*
M X Forecast™ 0.058

T—1 (0.005) (0.007)
1(T >t -0.047* -0.059**
(7>]%) X Recom"!‘

T—t (0.018) (0.028)
1 -0. 4 ok -0. kokok

(T > tg) « Recom-— 0.047 0.088

T—1 (0.019) (0.031)
1(T > tr) -0.111%* -0.130***
——— = X Buys

T—t (0.026) (0.044)
1(T > tr) 0.052%** 0.046***
——= X Sales

T—1 (0.005) (0.009)
Maturity pol. Yes Yes
Signal x maturity pol. Yes Yes
Learning pol. Yes Yes
Firm x info. Yes Yes
Fixed effects Day x firm Day x firm
Ajusted R2 0.954 0.954
Obs. 3,039,877 3,039,877

46



References

G. Bakshi, N. Kapadia, and D. Madan. Stock return characteristics, skew laws, and the dif-
ferential pricing of individual equity options. Review of Financial Studies, 16(1):101-143,
2003.

W. H. Beaver, M. F. McNichols, and Z. Z. Wang. The information content of earnings announce-
ments: New insights from intertemporal and cross-sectional behavior. Review of Accounting

Studies, 23:95-135, 2018.

K. Chapman. Earnings notifications, investor attention, and the earnings announcement pre-
mium. Journal of Accounting and Economics, 66(1):222-243, 2018.

K. Demeterfi, E. Derman, M. Kamal, and J. Zou. More than you ever wanted to know about
volatility swaps. Goldman Sachs Quantitative Strategies Research Notes, 41:1-56, 1999.

J. Driessen, P. J. Maenhout, and G. Vilkov. The price of correlation risk: Evidence from equity
options. The Journal of Finance, 64(3):1377-1406, 2009.

A. Dubinsky, M. Johannes, A. Kaeck, and N. J. Seeger. Option pricing of earnings announcement
risks. Review of Financial Studies, 32(2):646-687, 2019.

L. R. Glosten and P. R. Milgrom. Bid, ask and transaction prices in a specialist market with
heterogeneously informed traders. Journal of Financial Economics, 14(1):71 — 100, 1985.

R. D. Gordon. Values of mills’ ratio of area to bounding ordinate and of the normal probability
integral for large values of the argument. Ann. Math. Statist., 12(3):364-366, 09 1941.

T. L. Johnson and E. C. So. Time will tell: Information in the timing of scheduled earnings
news. Journal of Financial and Quantitative Analsysis, 53(6):2431 — 2464, 2018.

R. R. Mendenhall and W. D. Nichols. Bad news and differential market reactions to announce-
ments of earlier-quarters versus fourth-quarter earnings. Journal of Accounting Research, 26:
63-86, 1988.

J. M. Patell and M. A. Wolfson. Anticipated information releases reflected in call option prices.
Journal of Accounting and Economics, 1(2):117-140, 1979.

J. M. Patell and M. A. Wolfson. The ex ante and ex post price effects of quarterly earnings
announcements reflected in option and stock prices. Journal of Accounting Research, 19(2):
434458, 1981.

L. Villacorta. Robust standard errors to spatial and time dependence when neither n nor t are
very large. Technical report, CEMFI, Mimeo, 2015.

47



	Estimating implied volatility
	Alternative measures of volatility and prior signals
	Option liquidity
	Error due to the term structure
	Functional form
	Actual versus expected earnings announcement dates
	Extended Model
	Falsification exercise
	Comparison with other informativeness measures
	Event study analysis
	Tables underlying figures
	Alternative measures of earnings informativeness and prior signals
	Unobserved heterogeneity in earnings announcement informativeness
	Firm heterogeneity
	Fiscal quarter heterogeneity


