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Section A describes our volatility estimator, justifies it, and compares it with alternative ones.
Section B analysis whether our results hold using different volatility estimators. Section C
addresses the heterogeneity depending on option liquidity. We justofy our measure of the slope in
Section D and argue why it serves as an estimate of the error induced by the flat-term structure
assumption of previous papers. Section E assesses the effect of assuming different functional
forms for the term structure. Section F relaxes the assumption that all announcement dates are
known in advance with certainty and uses a proxy for the expected announcement dates instead
of the actual ones. Section G extends the model to account for price and announcement volatility
jumps. To compute the distribution of the estimator for signals that are uninformative by design,
Section H provides a falsification exercise. Section I describes the construction of the alternative
measures of informativeness presented in Section 4 of the paper. Section J takes an event-study
approach focusing on short windows around the market signal. We provide the numbers used to
create the figures in the paper in Section K. We use alternative information measures to study
prior signals in Section L. Section M takes potential heterogeneity in informativeness by firm
and by quarter into account.



A Estimating implied volatility

The main dependent variable in the paper is the variance under the risk-neutral measure. To ex-

tract this quantity, most of the previous literature focuses on three methods: the non-parametric

method proposed by Bakshi et al. (2003) (BKM), the non-parametric method proposed by

Demeterfi et al. (1999) (DDKZ) and used in the computation of the Chicago Board Options Ex-

change’s Volatility Index (VIX), and the implied volatility computed by OptionMetrics, which

relies on the log-normality of returns as Black-Scholes formula. This appendix explains how we

applied each of the methods and discusses their advantages and disadvantages. Nonetheless,

any methodology delivers similar results.

Regardless of the method, to avoid major effects of illiquidity and to be able to compute the

implied variance, we drop observations (firm-date-maturity-strike quadruplets) that satisfy one

of these conditions:

� There is no information about the underlying price.

� The bid price is zero.

� The ask price is lower or equal to the bid price.

� OptionMetrics does not provide the implied volatility (this is a signal of non-standard

options).

We also net the discounted dividends from the underlying spot price using the projected ex-

dividend date and dividend amount provided by OptionMetrics. We use as rate of discount the

zero-coupon yield provided by OptionMetrics linearly interpolated across the available maturi-

ties.

Non-parametric

The non-parametric methods assume that we observe a continuum of strikes and we integrate

the weighted option prices across all strikes to obtain the risk-neutral variance. Unfortunately,

we only observe a finite number of strikes and, for most of them liquidity is low. There are

two ways to proceed using OptionMetrics data. The first one consists of using the quoted

midpoints of each available option, similar to BKM. The second one relies on the volatility
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surface provided by OptionMetrics and has also been used extensively (e.g., Driessen et al.,

2009). Although the second approach provides smoother estimates, the interpolation algorithm

used by OptionMetrics across strikes and maturities eliminates any discontinuity across strikes

or along the term structure. Hence, by construction, it eliminates the variation from which we

identify the effect. As a consequence, we rely on quoted midpoints. In-the-money and out-

of-the money options carry the same information due to the put-call parity; hence, following

the literature, we keep out-of-the-money options to reduce the impact of early exercise. Since

we need to assume a wide range of strikes, we drop any date-firm-maturity triplet with less

than six out-of-the-money options to compute the non-parametric measures. Then we apply the

following discretized version of the original BKM formula:
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where Ci,t,τ,k refers to the midpoint of call option prices, Pi,t,τ,k refers to put option prices, and K

is the strike price. rt,τ is the zero-coupon yield provided by OptionMetrics interpolated linearly.

Si,t,τ is the spot price minus the discounted expected dividends from t to τ . The subscripts

indicate the firm (i), the day (t), the maturity (τ), and the strike (k). Strikes are numbered

from the lowest to the highest such that Ki,t,τ,k > Ki,t,τ,k−1∀k. We also construct the DDKZ

measure using the following discretized formula:

IV DDKZ2
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where Qi,t,τ,k is the midpoint quote of the option (puts or calls). K0 is the strike closest to the

spot price. k = {1, ..., Ni,t,τ} indeces both out-of-the-money put and call options.

The discrete approximation takes two arbitrary decisions: i) prices across strikes are inter-

polated linearly and ii) prices below the minimum strike or above the maximum strike are not

considered. Both of these decisions, as well as any alternative one, create noise in our implied

volatility estimator. However, this noise is likely to be unrelated to the term structure, and more

importantly, unrelated to ex ante signals. Nonetheless, to avoid extremely noisy observations,

we drop those firm-date-maturity triplets from the sample for which:1

� DDKZ volatility exceeds 200% (573 triplets)

� BKM volatility exceeds 200% (186 triplets)

� OptionMetrics at-the-money volatility exceeds 200% (3,850 triplets)

� One of the measures doubles the mean of the three measures (97 triplets)

1These filters do not change the results as they exclude 0.13% of the sample.
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In the paper we focus on the BKM measure because it measures the implied quadratic

variation in the presence of jumps while DDKZ captures the integrated variance if the process is

continuous. Nonetheless, we repeat all the results using the DDKZ measure and the closest-to-

at-the-money OptionMetrics volatility for the same set of firm-date-maturity triplets and results

are almost identical (see Tables in this section).

Parametric

Patell and Wolfson (1979) and Dubinsky et al. (2019), among others, hinge on the implied

volatility provided by OptionMetrics. This volatility is the result of discretizing Black-Scholes

into a binomial model and computing the volatility of an American option. This approach

has the advantage that we can obtain the implied volatility with just one option per firm-date-

maturity. But it carries some disadvantages. First, note that discretizing is not an issue anymore

but it translates into an aggregation issue. In particular, the implied volatility across strikes is

different. We follow Dubinsky et al. (2019) and use the closest to at-the-money available option.

This option has the highest Vega and, therefore, its price is most affected by the earnings

announcement risk. As a consequence, the identification would be cleaner.

The second disadvantage is the parametric assumption. The above-mentioned papers as-

sumed the Black-Scholes model holds, at least to some extent. However, if insiders exploit their

private information, the Black-Scholes model does not hold because the signal the market re-

ceives from these trades is extremely asymmetric (see illustrative example below). Therefore,

the methodology would be incorrect under the alternative hypothesis. Nonetheless, given the

consistency of results for the subset of firm-day-maturity triplets in which we can compute the

non-parametric volatility, this disadvantage does not seem to play a major role. Hence, we re-

estimate the main results with every observation for which we observe the parametric implied

volatility to increase the sample size and assess the consequences of sample selection.

Illustrative example

This example illustrates why Black-Scholes implied volatility might provide wrong conclusions

in the presence of informed traders. In particular, we show that the implied volatility computed

using Black-Scholes increases after the market observes other signals such as insider trading,

even if the risk-neutral volatility decreases.
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Assume that at time 0 there is an asset with price S0 and payoff at T equal to VT . Con-

sider the canonical model in which the risk-neutral probability of the payoff is such that VT =

er−
σ2

2
T+σεTS0 and εT ∼ N (0, T ). Following Glosten and Milgrom (1985), a risk-neutral in-

formed investor, who knows vT with certainty, trades one unit of the asset at time 1. Consider

for simplicity that investors know she is indeed informed and the information investors learn

does not change the Radon-Nikodym derivative that links the risk-neutral and physical proba-

bility measures. For instance, this is the case if the information is idiosyncratic to the firm and

the marginal investor is fully diversified.

Due to risk-neutrality, the informed investor always trades. She buys if the liquidation value

exceeds the forward price, VT > er(T−1)S0 ≡ F0, and sells otherwise. Therefore, the asset prices

after the informed agent buys are given by:

S1 = e−r(T−1)E(VT |VT > F0) C1(K) = e−r(T−1)E
(
(VT −K)+ |VT > F0

)
where C1(K) indicates the price of a call option with strike price K, and E denotes the expecta-

tion under the risk-neutral measure. To ease the exposition, we use (a)+ to denote the maximum

between a and 0. Since we aim to show a counterexample in which Black-Scholes provides the

wrong prediction, we focus on the call option after the informed investor buys. Nonetheless, a

similar procedure will provide counterexamples in the other situations.

First, we prove the intuitive result that the risk-neutral variance of the asset decreases with

the new information. To ease the exposition we refer to the logarithm of the price, liquidation

value and forward price as s, v, and f respectively. We define τ = T − 1.

Lemma 1. The risk-neutral variance is lower after updating the beliefs with the new information

V (vT − s1|vT > f0) < V(vT − v1) = σ2τ

Proof. vT − v1 = r − σ2

2 T − v1 + σεT . Hence the conditional distribution vT − v1|vT > f0 is a

truncated normal whose variance is given by:

V (vT − s1|vT > f0) = σ2T

[
1− φ(α)

1− Φ(α)

(
φ(α)

1− Φ(α)
− α

)]
where φ(·) and Φ(·) denote the pdf and cdf of the standard normal distribution. α is the

standardized truncation threshold: α =
f0 − r − σ2

T T − v1

σ
√
T

. Therefore, the variance is lower iff
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φ(α)

1− Φ(α)
> α. The left-hand side of the equation is the inverse Mills ratio; hence, the inequality

is true for all α (see Gordon, 1941).

Then, we prove that Black-Scholes implied variance is higher than the initial one. To do that,

we show that the Black-Scholes formula using the initial implied volatility (σ) results in a lower

call price than the one based on risk-neutral pricing under the truncated distribution. Since the

derivative of the Black-Scholes formula with respect to volatility, named Vega, is positive for

the whole support, the implied volatility must be higher to equal the call price.

Lemma 2. The call price is higher than the one predicted by Black-Scholes using the uncondi-

tional risk-neutral volatility σ.

C1(K) > BS(K,σ, v1, r, τ)

where BS(k, s, v, r, τ) refers to the Black-Scholes function with strike price k, volatility s, spot

price v, risk-free rate r, and maturity τ .

Proof. Denote as g(v, r, τ) and G(v, r, τ) the pdf and cdf of vT given v1 assumed by the Black-

Scholes model for a maturity equal to τ and an interest rate equal to r. Then,

BS(K,σ, v1, r, τ) = e−rτ
∞∫
K

(v −K)+g(v)dv < e−rτ
∞∫

max{F0,K}

(v −K)+
g(v)

G(F0)
dv = C1(K)

This example illustrates the problem of using Black-Scholes in an extreme setting. The more

symmetric the posterior signal received from the trade is, the more reliable is Black-Scholes.

There are many missing ingredients that would contribute to relaxing the problem and are likely

to play a role. For instance, investors might not be able to distinguish informed an uninformed

agents; informed agents might not know the actual liquidation value but just a noisy signal of

that value, etc.

Comparison

Table A.1 compares the informativeness of the earnings announcement across the three different

volatility measures. We observe that BKM provides the highest estimate, while there are mild
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differences with the other two volatility measures. Nonetheless, if we expand the sample and

consider the whole OptionMetrics sample, the average relevance of earnings announcements

decreases. This evidence suggests that investors rely less on accounting information to price

those firms outside our original sample. Yet, earnings announcements explain 9% (2.26 × 4) of

the total variance of an average firm.

Table A.1: The informativeness of earnings announcements - Different volatility measures

The first column of this table repeats the third column of Table 4 which includes the baseline specification

to estimate λ. Then, column (2) repeats the estimation using the implied volatility measure developed

by Demeterfi et al. (1999). Column (3) and (4) use the implied volatility provided by OptionMetrics.

While column (3) uses the same sample as the other measures, column (4) includes every other option

for which we have implied volatility. Standard errors are clustered at both the day and the firm-quarter

level and presented in parentheses. *, **, and *** indicates statistical significance at the 10%, 5%, and

1% level respectively.

Dep. var.: implied volatility (1) (2) (3) (4)

1 (T > tR)
1

T − t
(γ)

2.665∗∗∗ 2.517∗∗∗ 2.639∗∗∗ 2.258∗∗∗

(0.023) (0.022) (0.022) (0.022)

Maturity pol. Yes Yes Yes Yes

Learning pol. No No No No

Fixed Effects Day × firm Day × firm Day × firm Day × firm

Ajusted R2 0.949 0.960 0.969 0.925

Obs. 3,039,877 3,039,877 3,039,877 6,148,923
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B Alternative measures of volatility and prior signals

Although Section A shows that the selection of one volatility measure instead of the alternatives

has a small impact on the average relevance of the announcement, it might be the case that the

choice of the measure matters for conclusions on how the signals affect the informativeness of

the announcement. In this section, we explore this possibility. Tables B.1 and B.2 provide the

results of the estimation using the alternative volatility measures. We observe that the effects

are very similar across measures. Table B.3 implements the model on the whole sample using

the parametric volatility. In this case, we also observe similar results. These results suggests

that our sample is not fully representative of the OptionMetrics universe while it constitutes a

close approximation.
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Table B.1: Earnings information disclosed by other signals: Demeterfi et al. (1999)

This table reports the results of the regression shown in Equation (3). The dependent variable

is twice the log of implied volatily. Buys (Sales) is the number of days with net buying (sell-

ing) by corporate insiders since the last EA. Forecast+ (Forecast−) is the number of upward

(downward) forecast revisions since the last EA. Recom+ (Recom−) is the number of upward

(downward) recommendation revisions since the last EA. Standard errors are clustered at both

the day and the firm-quarter level and presented in parentheses. Table 6 describes the vari-

ables. *, **, and *** indicates statistical significance at the 10%, 5%, and 1% level respectively.

Dep. var.: implied vol. (1) (2) (3) (4)

1 (T > tR)

T − t
2.373∗∗∗ 2.311∗∗∗ 2.429∗∗∗ 2.313∗∗∗

(0.023) (0.026) (0.027) (0.030)

1 (T > tR)

T − t
× Forecast+

-0.053∗∗∗ -0.049∗∗∗ -0.050∗∗∗

(0.005) (0.005) (0.005)

1 (T > tR)

T − t
× Forecast−

-0.069∗∗∗ -0.065∗∗∗ -0.056∗∗∗

(0.004) (0.004) (0.004)

1 (T > tR)

T − t
×Recom+ -0.062∗∗∗ -0.038∗∗∗ -0.053∗∗∗

(0.015) (0.014) (0.014)

1 (T > tR)

T − t
×Recom−

-0.101∗∗∗ -0.062∗∗∗ -0.057∗∗∗

(0.015) (0.015) (0.015)

1 (T > tR)

T − t
×Buys

-0.107∗∗∗

(0.020)

1 (T > tR)

T − t
× Sales

0.050∗∗∗

(0.004)

Maturity pol. Yes Yes Yes Yes

Signal × maturity pol. Yes Yes Yes Yes

Learning pol. Yes Yes Yes Yes

Fixed effects Day × firm Day × firm Day × firm Day × firm

Ajusted R2 0.961 0.960 0.961 0.961

Obs. 3,039,877 3,039,877 3,039,877 3,039,877
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Table B.2: Earnings information disclosed by other signals: OptionMetrics

This table reports the results of the regression shown in Equation (3). The dependent variable

is twice the log of implied volatily. Buys (Sales) is the number of days with net buying (sell-

ing) by corporate insiders since the last EA. Forecast+ (Forecast−) is the number of upward

(downward) forecast revisions since the last EA. Recom+ (Recom−) is the number of upward

(downward) recommendation revisions since the last EA. Standard errors are clustered at both

the day and the firm-quarter level and presented in parentheses. Table 6 describes the vari-

ables. *, **, and *** indicates statistical significance at the 10%, 5%, and 1% level respectively.

Dep. var.: implied vol. (1) (2) (3) (4)

1 (T > tR)

T − t
2.377∗∗∗ 2.296∗∗∗ 2.422∗∗∗ 2.293∗∗∗

(0.023) (0.026) (0.027) (0.030)

1 (T > tR)

T − t
× Forecast+

-0.055∗∗∗ -0.052∗∗∗ -0.052∗∗∗

(0.005) (0.005) (0.005)

1 (T > tR)

T − t
× Forecast−

-0.072∗∗∗ -0.068∗∗∗ -0.057∗∗∗

(0.004) (0.004) (0.004)

1 (T > tR)

T − t
×Recom+ -0.060∗∗∗ -0.035∗∗ -0.052∗∗∗

(0.015) (0.014) (0.014)

1 (T > tR)

T − t
×Recom−

-0.097∗∗∗ -0.056∗∗∗ -0.050∗∗∗

(0.016) (0.016) (0.015)

1 (T > tR)

T − t
×Buys

-0.114∗∗∗

(0.021)

1 (T > tR)

T − t
× Sales

0.057∗∗∗

(0.004)

Maturity pol. Yes Yes Yes Yes

Signal × maturity pol. Yes Yes Yes Yes

Learning pol. Yes Yes Yes Yes

Fixed effects Day × firm Day × firm Day × firm Day × firm

Ajusted R2 0.970 0.970 0.970 0.971

Obs. 3,039,877 3,039,877 3,039,877 3,039,877
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Table B.3: Earnings information disclosed by other signals: Whole OptionMetrics

This table reports the results of the regression shown in Equation (3). The dependent variable

is twice the log of implied volatily. Buys (Sales) is the number of days with net buying (sell-

ing) by corporate insiders since the last EA. Forecast+ (Forecast−) is the number of upward

(downward) forecast revisions since the last EA. Recom+ (Recom−) is the number of upward

(downward) recommendation revisions since the last EA. Standard errors are clustered at both

the day and the firm-quarter level and presented in parentheses. Table 6 describes the vari-

ables. *, **, and *** indicates statistical significance at the 10%, 5%, and 1% level respectively.

Dep. var.: implied vol. (1) (2) (3) (4)

1 (T > tR)

T − t
1.935∗∗∗ 1.910∗∗∗ 1.985∗∗∗ 1.806∗∗∗

(0.023) (0.025) (0.026) (0.028)

1 (T > tR)

T − t
× Forecast+

-0.021∗∗∗ -0.019∗∗∗ -0.028∗∗∗

(0.004) (0.004) (0.004)

1 (T > tR)

T − t
× Forecast−

-0.031∗∗∗ -0.028∗∗∗ -0.020∗∗∗

(0.004) (0.004) (0.004)

1 (T > tR)

T − t
×Recom+ -0.027∗∗ -0.016 -0.044∗∗∗

(0.012) (0.011) (0.011)

1 (T > tR)

T − t
×Recom−

-0.065∗∗∗ -0.048∗∗∗ -0.050∗∗∗

(0.013) (0.013) (0.012)

1 (T > tR)

T − t
×Buys

0.036∗

(0.022)

1 (T > tR)

T − t
× Sales

0.118∗∗∗

(0.005)

Maturity pol. Yes Yes Yes Yes

Signal × maturity pol. Yes Yes Yes Yes

Learning pol. Yes Yes Yes Yes

Fixed effects Day × firm Day × firm Day × firm Day × firm

Ajusted R2 0.925 0.925 0.926 0.927

Obs. 6,148,923 6,148,923 6,148,923 6,148,923
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C Option liquidity

Section A shows that extending the sample to the whole OptionMetrics universe changes slightly

the magnitude of the effect. This evidence suggests that option liquidity might correlate with

the informativeness of the earnings announcement. In this section we investigate how informa-

tiveness varies with option liquididy within our restricted sample and if option liquidity affects

the estimation of the effect of insider trading. First, we examine how the number of options

and maturity varies over time until the next earnings announcement. Further, we calculate the

average value of total open interest of each firm-day-maturity-triplet in a given firm-quarter.

We then sort the observations by open interest for each quarter and create groups.

If the proximity to the next earnings announcement affects the availability of observable

option prices or there is a systematic relation between days to maturity and the days left until

the next announcement, one might be concerned about a potential bias in our measure. Panel

A of Figure C.1 shows the average number of options as well the top and bottom quartile by

days until the next earnings announcement, indicating that the number of options is relatively

stable over time. Panel Panel B presents the average days to maturity by days until the next

announcements, also suggesting that there is no systematic relation over time.

Figure C.2 shows how our measure of earnings announcement informativeness varies over

open interest deciles. We find that the measure of earnings announcement informativeness

decreases with open interest. This may be a consequence of liquidity but it may also be the

result of firms without a liquid option market being less monitored; thus, relying more on

earnings announcements.
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Figure C.1: Number of options and maturity over time to the next announcement

These graphs show the average number of options (Panel Panel A) and the average number of days to

maturity (Panel Panel B) over the days until the next earnings announcement, as well as the lower and

upper quartiles.

Panel A: Number of options

Panel B: Days to maturity
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Figure C.2: EA informativeness by open interest deciles

These plots depict the estimate of the informativeness of earnings announcements, and the 95% con

dence intervals across deciles of open interest. Standard errors are clustered at both the day and the

firm level.
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D Error due to the term structure

Section 3 analyzes how our estimator of the bias of the measure proposed by Dubinsky et al.

(2019) correlates with different signals. In this section, we explain in further detail how we

construct the measure and provide evidence of its use as an estimate of the error induced by

the flat term structure assumption. Because Dubinsky et al. (2019) do not use options expiring

before the announcement, we use them to estimate the slope of the variance term structure and

define the error due to the flat term-structure assumption for firm i on date t as:

Errori,t =
1

M − 1

M∑
j=2

IV 2
τj−1
− IV 2

τj

τ−1j−1 + τ−1j

where M is the number of options expiring before the announcement, τ indicates an available

time to maturity such that τ1 < τ2 < ... < τM , and IV is the Black-Scholes volatility. Any mea-

sure of the term-structure would serve as an estimate of the bias. We select this one for two main

reasons. First, this measure would exactly capture the bias if options expiring before and after

the announcement had the same time-to-maturity distribution and there was no measurement

error. In practice, they do not, but the violation of those assumptions is unlikely related to

signals by insiders and analysts. Second, this measure has the same functional form as Dubin-

sky et al. (2019) measure; hence, it has a nice interpretation as a placebo test. In particular, it

corresponds to an exercise in which we assume that the earnings announcement date is before

the first expiration date, and we estimate the informativeness considering all options that expire

after this false announcement and before any real announcement.

This measure is a proxy for the error due to the flat term-structure assumption, but it does

not measure exactly the error. This feature precludes us from making any conclusion about

the average error or the size of the error because the measurement error in the variable might

influence both. Nonetheless, the measurement error will not affect the estimates when we include

our measure as a dependent variable in a regression. To reduce the noise of our error measure

and Dubinsky et al. (2019) measure, we aggregate them at the firm-quarter level by taking the

median. Table D.1 shows the summary statistics. The low liquidity of long-term options leads to

fewer announcements in our sample. Our proxy coincides with the argument by Dubinsky et al.

(2019) that the bias induced by the flat-term structure might be close to zero, although it is
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slightly negative.2 The remaining question is whether the variability of the bias is independent

of the relevant variables or not.

Before answering this question, we must show that our bias measure is related to the bias,

not pure noise. To do that, we regress the measure by Dubinsky et al. (2019) on our bias

measure. If our proxy was pure noise, or, equivalently, their measure was not biased, there

would be no correlation between the two variables. Column 1 of Table D.2 shows that, indeed,

these two variables are correlated. One possibility is that the whole correlation occurs at the

firm or quarter level; hence firm and quarter fixed effects could absorb the bias. Columns 2 and

3 show that the correlation persists even if we control for firm and quarter fixed effects. We

acknowledge there are few extreme outliers in the sample. In column 5, we restrict the sample

to observations in which the absolute value of the ratio between the bias and the measure itself

does not exceed 100%. The estimate increases considerably despite excluding just 12% of the

sample, and statistical significance increases.

To interpret the estimates is useful to consider the following model:

σ2DJKSπ,i,q = σ2TRUEπ,i,q + bi,q + ui,q; Errori,q = bi,q + vi,q

where σ2DJKSπ,i,q and Errori,q represent the estimates of the relevance of the announcement and

of the error induced by the flat term-structure assumption respectively. bi,q represents the

true error induced by the flat term-structure assumption and u and v are measurement errors

independent of each other and independent of σ2TRUEπ,i,q . Then, the estimator in the first column

of Table D.2 corresponds to:

cov(σ2TRUEπ,i,q , bi,q) + V ar(bi,q)

V ar(bi,q) + V ar(vi,q)

If the bias and the true relevance are uncorrelated, the estimate is the signal-to-noise ratio of

our estimator for the error induced by the flat term-structure assumption. Consequently, 66%

of the variation of our estimator would correspond to variation of the error due to the flat-term

structure. Once we eliminate the variation across firms and quarters through the fixed effects,

and outliers, 107% of the variation of our estimator would correspond to variation of the error

2Dubinsky et al. (2019) varies significantly depending on how we aggregate. In Figure 3 of the paper we use
the average across firms or years. The former weights more recent years while the later weight more firms with
more liquid options. This selection explains the difference between the figure in the paper and the results in this
table.
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due to the flat-term structure. If the error due to the flat-term structure and the true relevance

are positively (negatively) correlated, 107% is an upper (lower) bound of the variation of our

measure corresponding to the bias. Unfortunately, without observing the true relevance, we

cannot estimate this correlation. Nonetheless, in any case, if the error due to the flat-term

structure is a constant or our estimator is pure noise, the parameter estimate of the regression

will be zero.

Table D.1: Summary statistics Dubinsky et al. (2019) and bias at the firm-quarter level

This table present the date-firm level summary statistics of σ2 DJKS
π and Error. σ2 DJKS

π

is the measure of informativeness by Dubinsky et al. (2019) as described in Section I.

Error is our estimate of the bias of their measure estimated as described in Section D.

Obs Mean std P10 P50 P90

Option-level

Error 1221125 -0.065 1.131 -0.390 -0.017 0.249

σ2DJKSπ 643183 0.160 2.037 -0.563 0.116 1.048

Day-firm level (mean)

Error 443612 -0.119 0.705 -0.374 -0.044 0.093

σ2DJKSπ 312555 0.001 1.769 -0.566 0.055 0.720

Announcement level (mean)

Error 17643 -0.150 0.518 -0.404 -0.065 0.051

Rel.Error 14351 -4.116 2804.935 -118.053 2.062 150.108

σ2DJKSπ 17138 -0.018 1.389 -0.539 0.034 0.590

Announcement level (median)

Error 17643 -0.153 0.479 -0.393 -0.066 0.027

Rel.Error 14351 -49.694 4485.859 -124.810 -0.142 152.884

σ2DJKSπ 17138 0.005 1.204 -0.476 0.043 0.575
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Table D.2: Validation of our bias measure

This table presents the results of the regression:

σ2DJKS
π i,q = αi + δq + βErrori,q + εi,q

where αi and δq are firm and quarter fixed effects, σ2 DJKS
π is the median measure of informativeness

by Dubinsky et al. (2019) as described in Section I. Bias is our estimate of the bias of their measure

estimated as described in Section D. Rel. Bias corresponds to the ratio between Bias and σ2DJKS
π .

Standard errors are computed using Huber-White formula and presented in parentheses. Table 6 describes

the variables. *, **, and *** indicates statistical significance at the 10%, 5%, and 1% level respectively.

Dep. var.: Dubinsky et al. (2019) (1) (2) (3) (4)

Error
0.668∗∗∗ 0.586∗∗∗ 0.419∗∗ 1.072∗∗∗

(0.134) (0.155) (0.166) (0.308)

Fixed effects No Firm
Quarter
& firm

Quarter
& firm

Rel Error support (−∞,∞) (−∞,∞) (−∞,∞) (-1,1)

Adjusted R2 0.057 0.120 0.170 0.237

Obs. 14,351 14,320 14,320 10,559
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E Functional form

We acknowledge that the functional form of the term structure that we consider is arbitrary.

In this section, we assess the fit of the functional form and the consequences of alternative

functional forms. Because our estimation strategy requires a model that is linear in parameters,

we consider the term structure can be represented by:

δi,t +
M∑
m=1

λm(T − t)
m
n +

M∑
m=1

θm(T − tR)
m
n

where δi,t is the firm-date fixed effect, T is the expiration date, and tR is the time of the

announcement. The case in the main text is M = n = 2.

The first panel of Table E.1 considers a reduction to one polynomial term and extensions

to three or four terms (0 < M ≤ 4) while keeping n = 2. The biggest impact is when we only

consider one polynomial term. In this case, the estimated informativeness decreases from 2.37

to 2.31, and the R2 drops from 95.33% to 95.30%. Extending the polynomial barely affects the

estimate and R2. Therefore, we choose M = 2 for the sake of parsimony. Then, we consider if

the functional form might affect the results. The second panel of Table E.1 fixes M = 2 and

considers the term structure can be represented by:

δi,t + λ1(T − t)
1
n + λ2(T − t)

m
n + θ1(T − tR)

m
n + θ2(T − tR)

m
n

for all possible combinations of n ∈ N and m ∈ N such that 0 < n ≤ 4 and 0 < m ≤ 4, which

includes the quadratic polynomial (m = 2, n = 1). The results are very similar across functional

forms.

The lack of relevance of the functional form derives from the identification strategy. Our

model hinges on comparing options before and after the announcement; therefore, as long as

the functional form captures the average of each of these two option groups appropriately, the

results will be similar. Moreover, since we restrict our sample to options expiring in fewer than

90 days, low-degree polynomials capture the differences across maturities.
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Table E.1: Fit of the term-structure functional form

This table reports the results of the regression shown in Equation (2) using different functional forms for
the term structure. Panel A considers the following functional form:

δi,t +

M∑
m=1

λm(T − t)m
n +

M∑
m=1

θm(T − tR)
m
n

for different values of M . Panel B considers the term structure follows:

δi,t + λ1(T − t) 1
n + λ2(T − t)m

n + θ1(T − tR)
m
n + θ2(T − tR)

m
n

For different values of n and m. The baseline is m = n = 2. Adjusted-R2 are presented in parenthesis.
Extending the polynomial (n = m = 2)

M = 1 M = 3 M = 4

1 (T > tR)
1

T − t
(γ) 2.256 2.375 2.404

Adjusted−R2 (94.912) (94.972) (94.996)

Different Polynomials (M = 2)

m = 2 m = 3 m = 4

n = 1 2.344 2.339 2.337
(94.963) (94.962) (94.961)

n = 2 2.363 2.349 2.337
(94.969) (94.966) (94.962)

n = 3 2.379 2.367 2.355
(94.974) (94.971) (94.968)

n = 4 2.387 2.379 2.369
(94.977) (94.974) (94.972)
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F Actual versus expected earnings announcement dates

Our analysis rests on the implicit assumption that market participants know the earnings an-

nouncement dates with sufficient precision, so they can know which options are treated and

which are not. In line with this assumption, Johnson and So (2018) show that options react

to changes in the earnings announcement date. Market expectations about the announcement

date are not observable directly, so instead we need to rely on a proxy. In our main analysis we

use the actual earnings announcement dates as such proxy. This decision creates a concern for

insider trading as managers might have private information about the earnings date and transact

accordingly or they might displace the earnings date to transact over more days reducing the

price impact.

Typically, market participants are informed about the earnings announcement date via so-

called earnings notifications. These notifications are mandatory since Reg FD became effective in

2001. However, most earnings notifications occur relatively close to the earnings announcement

date, approximately 10 trading days (see Chapman (2018)). Market participants are likely to

have formed expectations about the timing of the next earnings announcement date even before

the official earnings notifications. In our analysis we analyze up to 90 calendar days before the

next earnings announcement. Even if we precisely know the date of the earnings notification, we

would need a proxy for market expectations in the remaining time, which represents the bulk

of our sample.

In the extreme event that earnings announcement dates are unpredictable, we would not

expect that the earnings announcement produces a wedge in implied volatility between options

maturing before or after the next earnings announcement. In the event that earnings announce-

ment dates are fairly predictable, the actual announcement dates would be a reliable proxy

for the expected dates. We evaluate the plausibility of this assumption in the following and

investigate the sensitivity of our findings with respect to this assumption.

First, we examine the deviation between the expected and the actual earnings date. We

estimate expected earnings announcement dates based on the current year’s end of the fiscal

quarter and add the number of business days between the end of the fiscal quarter and the

earnings announcement date from the same quarter of the firm’s last fiscal year. Table F.1

summarizes the deviation from the actual earnings announcement date and the expected date
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for each quarter, and the average across a given firm year. The deviations between the expected

and the actual earnings announcement dates are small, as the mean value is 0. Even the top and

bottom 10% are small with values of -2 and 4.3 We cross-tabulate the number of options classified

as ‘treated’ and ‘control’ under either the expected or the actual earnings announcement dates.

Given these small deviations, it is not surprising that the treatment status assigned to daily

option observations that depends on whether a given option expires before or after the next

earnings announcement date does not change much irrespective of whether we use the expected

or the actual earnings announcement dates. As shown in Table F.2 the majority of option days,

to be precise 97.7%, that are classified as treated under expected earnings dates would also be

classified as treated under the actual earnings dates. Similarly, 98.4% of option days classified

as control according to expected dates would be classified as such according to the actual dates.

Second, we use expected instead of actual earnings announcement dates as a further robust-

ness check. Table F.3 shows the results using the expected earnings announcement dates. We

find similar estimates estimate for the signals by analysts and insiders, though we note that

the economic magnitudes of recommendations are larger and the magnitude of insider buys is

smaller.

Table F.1: Summary statistics

This table shows the summary statistics for the number of business days between the expected earnings

announcement date and the actual earnings announcement date. The expected earnings announcement

date is calculated as the the current year’s end of the fiscal quarter plus the number of business days

between the end of the fiscal quarter and the earnings announcement date from the same quarter of the

firm’s last fiscal year.

Variable Obs. Mean S.D. 10pct 50pct 90pct

Deviation Q1 4,273 0 3 -2 0 4
Deviation Q2 4,080 0 3 -2 -1 4
Deviation Q3 4,351 0 3 -2 -1 4
Deviation Q4 4,247 0 4 -2 0 4
Mean firm-year deviation 3,201 0 2 -2 -0 2
Mean absolute firm-year deviation 3,201 2 1 1 2 4

3The number of observations decreases because we do not observe the deviation for the first year in the sample,
and because some earnings announcements could be missing.
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Table F.2: Treatment under actual and expected earnings announcements

This table tabulates the number of daily options that are treated, as they expire after the next earnings

announcement, and control, as they expire before the next earnings announcement, based on actual and

expected earnings announcement dates.

Control (expected) % Treated (expected) % Sum

Control (actual) 1,662,160 98.4% 22,268 2.3% 1,684,428

Treated (actual) 26,388 1.6% 964,384 97.7% 990,772
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Table F.3: Expected versus actual earnings announcement dates

This table shows the results of a regression of implied volatility on corporate insider purchases and sales.

The treatment status of option day observations is based on expected earnings announcement dates rather

than the actual dates. Column 1 shows the results of a regression of implied volatility on the square root

of the time to maturity interacted with a dummy variable indicating whether the option expires before

the next earnings announcement and a dummy variable that is Columns 2 to 4 add different sets of fixed

effects or control variables. Maturity pol. refers to controlling for the time to maturity of the option

measured in years and its square root as well as the interaction of the linear and the square root term

with the insider buy or sell variables. Standard errors are clustered at both the day and the firm-quarter

level and presented in parentheses. Table 6 describes the variables. *, **, and *** indicates statistical

significance at the 10%, 5%, and 1% level respectively.

Dep. var.: implied vol. (1) (2) (3) (4)

1 (T > tR)

T − t
2.277∗∗∗ 2.303∗∗∗ 2.416∗∗∗ 2.296∗∗∗

(0.031) (0.034) (0.036) (0.039)

1 (T > tR)

T − t
× Forecast+

-0.057∗∗∗ -0.051∗∗∗ -0.051∗∗∗

(0.007) (0.007) (0.007)

1 (T > tR)

T − t
× Forecast−

-0.070∗∗∗ -0.064∗∗∗ -0.055∗∗∗

(0.005) (0.005) (0.005)

1 (T > tR)

T − t
×Recom+ -0.116∗∗∗ -0.092∗∗∗ -0.103∗∗∗

(0.018) (0.018) (0.018)

1 (T > tR)

T − t
×Recom−

-0.125∗∗∗ -0.083∗∗∗ -0.078∗∗∗

(0.020) (0.020) (0.020)

1 (T > tR)

T − t
×Buys

-0.087∗∗∗

(0.025)

1 (T > tR)

T − t
× Sales

0.051∗∗∗

(0.006)

Maturity pol. Yes Yes Yes Yes

Signal × maturity pol. Yes Yes Yes Yes

Learning pol. Yes Yes Yes Yes

Fixed effects Day × firm Day × firm Day × firm Day × firm

Ajusted R2 0.943 0.943 0.943 0.943

Obs. 2,762,767 2,762,767 2,762,767 2,762,767
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G Extended Model

In the model in equation (1), we assume a constant volatility of the announcement jump for

simplicity and to ease the comparison with alternative models. However, investors might expect

information about the announcement before it occurs and the volatility might depend on the

time to the next announcement. In particular, investors might expect analyst forecasts or insider

transactions, and consequently, changes in stock price and the informativeness of the variance.

In this section, we extend the model to include these dynamics of prices although limiting the

analysis to a simple model.

Consider the price follows a simplified version of Merton’s jump-diffusion process:

dP (t)

P (t−)
= r(t) + σdW (t) + βdJ(t) + π1{t = tR}

where J(t) is a Poisson process with intensity λ up to the announcement date (tR) and remains

constant thereafter. β is constant and represents how much prices move when there is a signal

prior to the earnings announcement. We assume that the jump size on the announcement date

is distributed according to a normal distribution: π ∼ N(−σ
2
π

2 , σ2π), in which the expectation

ensures that the process is a martingale. Meanwhile, the variance itself is subject to Poisson

jumps of size θ:

dσ2π = µ+ θdJ(t)

Note that the process is subject to the same counting process as before reflecting that signals

such as a positive analyst forecast revision affect the variance of the announcement but also the

price of the asset. Including more Poisson processes in the price equation or adding a diffusion

term to the dynamics of σ2π do not change the conclusions and complicate the expressions. Using

other processes for σ2π to ensure non-negativity (e.g. exponential) mainly change the functional

forms.

In this model, the scaled risk-neutral variance is given by:

IV 2 = σ2π + λµ
tR − t
T − t

+ 1{T > tR}
(
−1

2
θβλ

tR − t
T − t

+ V (π)

)
where V (π) = 1

4λθ
2+µ+λθ. Note that we control for a polynomial in (tR−t) and another one in

(T − t), and the interaction with their treated variable 1{T > tr}. Therefore, we identify V (π).

We use the learning polynomial based on (tR − t) instead of tR−t
T−t because it mimics the other
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polynomial and the factor tR−t
T−t depends on the model we choose (e.g., an exponential model

for the variance of the announcement would lead to a different functional form). Nonetheless,

we re-estimate our main analysis in Table 5 using a polynomial on tR−t
T−t and results are almost

identical. Table G.1 presents the results.
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Table G.1: Earnings information disclosed by other signals

This table reports the results of the regression shown in Equation (3). The dependent variable

is twice the log of implied volatily. Buys (Sales) is the number of days with net buying (sell-

ing) by corporate insiders since the last EA. Forecast+ (Forecast−) is the number of upward

(downward) forecast revisions since the last EA. Recom+ (Recom−) is the number of upward

(downward) recommendation revisions since the last EA. Standard errors are clustered at both

the day and the firm-quarter level and presented in parentheses. Table 6 describes the vari-

ables. *, **, and *** indicates statistical significance at the 10%, 5%, and 1% level respectively.

Dep. var.: implied vol. (1) (2) (3) (4)

1 (T > tR)

T − t
2.475∗∗∗ 2.369∗∗∗ 2.548∗∗∗ 2.374∗∗∗

(0.030) (0.035) (0.035) (0.039)

1 (T > tR)

T − t
× Forecast+

-0.050∗∗∗ -0.048∗∗∗ -0.048∗∗∗

(0.006) (0.006) (0.006)

1 (T > tR)

T − t
× Forecast−

-0.067∗∗∗ -0.064∗∗∗ -0.054∗∗∗

(0.004) (0.004) (0.004)

1 (T > tR)

T − t
×Recom+ -0.050∗∗∗ -0.028∗ -0.043∗∗∗

(0.016) (0.015) (0.015)

1 (T > tR)

T − t
×Recom−

-0.095∗∗∗ -0.058∗∗∗ -0.052∗∗∗

(0.017) (0.017) (0.016)

1 (T > tR)

T − t
×Buys

-0.110∗∗∗

(0.022)

1 (T > tR)

T − t
× Sales

0.054∗∗∗

(0.004)

Maturity pol. Yes Yes Yes Yes

Signal × maturity pol. Yes Yes Yes Yes

Learning pol. (fraction) Yes Yes Yes Yes

Fixed effects Day × firm Day × firm Day × firm Day × firm

Ajusted R2 0.950 0.950 0.950 0.950

Obs. 3,039,877 3,039,877 3,039,877 3,039,877
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H Falsification exercise

We acknowledge that the asymptotic distribution of the estimator that we use in the paper

assumes that the firm-date fixed effects and the two-way cluster variance correctly take into

account the time series properties of the implied volatility process. If the implied volatility of

different maturities do not share a cointegration relationship or if the measurement error of the

implied volatility is highly persistent, our inference would be incorrect. Similarly, we base our

analysis on an asymptotic approximation, which might be problematic when using the two-way

cluster variance if the within-cluster correlation is high with respect to the number of clusters

(Villacorta, 2015).

To tackle these issues, in this section we obtain the finite-sample distribution of our estimators

under the null hypothesis that the signals are uninformative. Since we would like to maintain

the properties of the implied volatility across time, we keep the sample implied volatility and the

distribution and timing of the signals, and we randomly assign upward and downward signals

to trading days, keeping the respective number of upward and downward signals for each agent

we consider fixed. For example, in Panel A we randomize upward and downward forecasts

by analysts, while maintaining the actual occurence of all other signals. For each signal, We

repeat the process 1,000 times to create 1,000 placebo samples. These samples closely represent

samples in which the signals have no effect on earnings announcement informativeness by design.

Hence, applying our estimation in each sample, we recover the finite-sample distribution of our

estimator under the null hypothesis. The advantage of this approach compared with bootstrap

or parametric simulation methods lies in the possibility of maintaining the complete correlation

structure of implied volatility over time and across firms. The main disadvantage consists of

the small tilt towards our estimates that the empirical distribution will have; nonetheless, this

disadvantage works against validating our approach.

Figure H.1 shows the empirical distribution under the null hypothesis of the baseline esti-

mators, γ̂+ and γ̂−. The blue dotted lines in the graphs show the actual estimates presented in

Table 5. For all simulated signals, the mean values of γ̂+ and γ̂− are close to zero. We find that

the simulated estimates are substantially smaller than the estimates based on the actual data in

Table 5. For example, for analyst forecasts the mean value of γ̂+ is -0.008, while the mean value

of γ̂− is -0.008. These values are much smaller than the estimates we observe for the actual
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timing of analyst forecast revisions. More importantly, the p-value of our actual estimates using

the simulated distribution is zero for all signals, consistent with the high significance that we

report in the main analysis.
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Figure H.1: Simulated distribution under the null of uninformative signals

This figure shows the estimates of γ+ (left graph) and γ− (right graph). The dots are based on simulating

the upward and downward signals for each type of signal 1,000 times and repeating the analysis of Table

5, while keeping the remaining actual distribution of the other signals. The black crosses indicate the

respective mean value of γ̂+ and γ̂−, while the distance from the mean to the dotted lines show one

standard derviation. The dashed blue line shows the actual estimates from Table 5 in the main paper.

Panel A: Distributions of γ̂+ and γ̂− for analyst forecasts

Panel B: Distributions of γ̂+ and γ̂− for analyst recommendations

Panel C: Distributions of γ̂+ and γ̂− for corporate insider transactions
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I Comparison with other informativeness measures

One of the contributions of the paper is to suggest an exante measure of earnings announcement

informativeness that varies at a daily frequency and is valid under mild assumptions. In Figure

3, we compare our measure of earnings announcement informativeness with alternative measures

across different firms and across different years. In general, every measure correlates significantly

with our proposed measure and they share the same time-series pattern, which provides support

to our measure. This section describes how we construct each measure.

To construct our measure, we estimate the following regression equation using the 90 days

prior to each announcement:

ln(IV 2
i,t,T ) = µi,t +

2∑
j=1

λaj (T − t)j/2 + γa1
(
T > tRi,t

) 1

T − t
+ εi,t,T

where subscripts i, t, T denote firm, time, and maturity; and the superscript a emphasizes that

we estimate it per firm (scatter plot) or per year (line plots). IV is the nonparametric risk-

neutral volatility estimator proposed by Bakshi et al. (2003), tR is the day of the announcement,

and γa is the average informativeness of the earnings announcement as a proportion of the annual

variance. Note that this modeling is much more general and robust than the baseline model

because it considers a different term structure (λaj ) per firm or year. Yet, the results are very

similar.

As explained in the main paper, Patell and Wolfson (1981) propose measuring the informa-

tiveness of the announcement by exploiting the time-series variation of implied volatility before

the announcement. Precisely, the estimator is given by:

σ̂2π,PW =
IV 2

t2,T
− IV 2

t1,T

(T − t2)−1 − (T − t1)−1
, (t1 < t2 < tR and T > tR).

To implement it, for each day and maturity, we compute the weekly change in OptionMetrics

implied variance of the at-the-money options. Then, we average across all days and maturities

to obtain the scatter plot and across all days in a given year and all maturities to obtain the line

plots. We use weekly changes and the OptionMetrics estimator to follow PW; however, these

decisions are not crucial. Finally, σ̂2π,PW measures the informativeness in absolute terms instead

of relative to the annual variance; hence we normalize the estimator by dividing it by the mean

of the implied variance of options that expire before the earnings announcement.
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Dubinsky et al. (2019) propose a similar estimator using the term structure:

σ̂2π,DJKS =
IV 2

t,T1
− IV 2

t,T2

(T1 − t)−1 − (T2 − t)−1
, (tR < T1 < T2).

In this case, for each day we compute the difference between the at-the-money OptionMetrics

implied variance of each option and the one with a longer maturity as long as both maturities

are posterior to the announcement. We then average across maturities and days for a given

announcement. Similar to the previous case, we normalize the estimator by the implied variance

of options that expire before the earnings announcement.

Beaver et al. (2018) construct a test of significance of earnings announcement whose intuition

closely relates to our definition of informativeness. We follow their procedure:

1. We create an estimation period of 130 days before the announcement until 10 days before,

and 10 to 130 days after the announcement.

2. We aggregate the data to 3-days cumulative returns.

3. We estimate the market model using the S&P500 as benchmark and data of the estimation

period.

4. We construct the abnormal return as the cumulative return from the day before to the

day after the announcement minus the predicted return from the market model.

5. We construct the U-statistic as the squared abnormal return over the residual variance of

the market model in the estimation period.

Finally, we subtract one to make it comparable to the other measures. The interpretation is

similar to our γ since it is the ratio of the squared abnormal return on the announcement

date over the idiosyncratic variance. The main difference is that this measure focuses on the

idiosyncratic part while ours is the ratio of the total variance of returns.
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J Event study analysis

The analysis in the main paper uses the whole time series of each firm to estimate the effect of

each signal, e.g. insiders’ sales and buys. The benefits of this approach are threefold. First, we

obtain more precise estimates by including more data. Second, we account for the correlation

across signals. Third, the model accommodates downward and upward signals of the same stock

in subsequent days. In an event study jargon, the pre-event period length varies depending on

the timing of the last signal and, similarly, the post-event window length widens as the next

transaction delays.

Compared to an event study analysis, our main analysis also owns several disadvantages.

First, we implicitly assume that the effect of two upward signals doubles the effect of one.

Second, we consider that our measure of informativeness remains similar across days and firms.

These concerns are important if there is a spurious correlation between the informativeness of

the earnings announcement and the propensity of insiders to buy or sale. For instance, if in the

2000s we had less sales and less earnings informativeness than in the 2010s, we would erroneously

conclude that sales increase the earnings informativeness.

Our main analysis also differs from an event study in the estimated effect that we recover.

Consider for example downward forecast revisions. Moreover, consider that the effect of those

revisions varies across firms and days. Because we use a panel data of options, the average

effect we recover does not weight equally all firms and days with the same number of downward

revisions. Instead, firms and days with more options would have a higher weight. This feature is

an advantage if the effect of downward revisions is similar because we put more weight on those

firm-days for which our identification is more suitable. However, if prior downward forecast

revisions affect firms or periods with more options differently, our estimates would not reflect

the average effect of downward revisions.

To take into account the different frequency of signals across firms and dates and ensure that

our results are not driven by these differences, we estimate the same model using an event study

approach. Precisely, we identify the date of each signal (e.g., of an insider transaction) as τ = 0

and include the implied volatility of the firm transacted only for the days in the final sample

such that |τ | ≤ τ = 10 We explore τ ∈ {1, 2, 5, 10} and the conclusions are similar. Then, we

estimate by OLS:
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2log(IVe, τ, T ) = δe,τ +
1{T > tRi,t}

T − t

(
γ + 1{τ ≥ 0}(

∑
a

γ+a ∆Upwardae + γ−a ∆Downwardae)

)
(1)

+
2∑
j=1

λj(T − t)j/2 +
2∑
j=1

θj(tR − t)j/2

+
1{T > tRi,t}

T − t
∑
a

2∑
j=1

λa,j(T − t)j/2(
∑
a

λ+a ∆Upwardae + λ−a ∆Downwardae) + εe,τ,T

(2)

where e indexes the events and τ is the event time. ∆Downwardae is a dummy variable that

takes the value one if the event is a negative signal (e.g., an insider sale) and zero if it is a a

positive signal (e.g., an insider purchase). Recall that T is the maturity of the option, tR is the

announcement date in calendar time, and t is the calendar time that corresponds to event e and

event time τ . We cluster the standard errors at the firm and calendar date levels.

Table J.1 presents the results. We observe that results are stronger than in the main paper.

A significant part of this difference arises because there are signals in the estimation window that

we disregard because of the setup. However, the difference might also be due to the weighting

difference we describe before or they arise from a better or worse fit of the term structure, a

different composition of firms in terms of option liquidity, or the dynamic effect in which one

signal leads or lags another one.
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Table J.1: Earnings information disclosed by other signals - Event Study analogy

This table reports the results of the regression shown in Equation (3). The dependent variable

is twice the log of implied volatily. Buys (Sales) is the number of days with net buying (sell-

ing) by corporate insiders since the last EA. Forecast+ (Forecast−) is the number of upward

(downward) forecast revisions since the last EA. Recom+ (Recom−) is the number of upward

(downward) recommendation revisions since the last EA. Standard errors are clustered at both

the day and the firm-quarter level and presented in parentheses. Table 6 describes the vari-

ables. *, **, and *** indicates statistical significance at the 10%, 5%, and 1% level respectively.

Dep. var.: implied vol. (1) (2) (3) (4)

1 (T > tR)

T − t
0.906∗∗∗ 0.807∗∗∗ 0.979∗∗∗ 0.899∗∗∗

(0.160) (0.166) (0.143) (0.134)

1 (T > tR)

T − t
× Forecast+

-0.080∗∗∗ -0.131∗∗∗ -0.209∗∗∗

(0.022) (0.022) (0.023)

1 (T > tR)

T − t
× Forecast−

-0.189∗∗∗ -0.238∗∗∗ -0.313∗∗∗

(0.020) (0.021) (0.023)

1 (T > tR)

T − t
×Recom+ 0.025 0.181∗∗∗ 0.097∗∗∗

(0.027) (0.030) (0.030)

1 (T > tR)

T − t
×Recom−

-0.125∗∗∗ 0.048 -0.027

(0.030) (0.032) (0.032)

1 (T > tR)

T − t
×Buys

-0.375∗∗∗

(0.116)

1 (T > tR)

T − t
× Sales

0.518∗∗∗

(0.037)

Maturity pol. Yes Yes Yes Yes

Signal × maturity pol. Yes Yes Yes Yes

Learning pol. Yes Yes Yes Yes

Fixed effects Day × firm Day × firm Day × firm Day × firm

Ajusted R2 0.949 0.951 0.949 0.950

Obs. 2,330,713 1,164,230 3,290,033 5,063,366
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K Tables underlying figures

Table K.1: Insider Position (Figure 4)

This table shows the estimates and standard errors used to construct Figure 4 in

the main paper. Standard errors are clustered at both the day and the firm-

quarter level and presented in parentheses. Table 6 describes the variables. *, **,

and *** indicates statistical significance at the 10%, 5%, and 1% level respectively.

Dep. var.: implied volatility (1)

Officer ×1 (T > tR) (1/T − t)CBuys 0.015

(0.054)

Officer ×1 (T > tR) (1/T − t)CSales 0.047∗∗∗

(0.005)

Director ×1 (T > tR) (1/T − t)CBuys -0.194∗∗∗

(0.032)

Director ×1 (T > tR) (1/T − t)CSales 0.046∗∗∗

(0.013)

Beneficial owner ×1 (T > tR) (1/T − t)CBuys -0.110∗∗∗

(0.030)

Beneficial owner ×1 (T > tR) (1/T − t)CSales 0.017

(0.024)

Other ×1 (T > tR) (1/T − t)CBuys -0.380

(0.267)

Other ×1 (T > tR) (1/T − t)CSales 0.001

(0.050)
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Table K.1: Insider Position (Figure 4) continued

Difference in coefficients
Buys: officer - director 0.209∗∗∗

F-value (9.66)
Buys: officer - beneficial owner 0.125∗

F-value (3.39)
Buys: officer - other 0.395
F-value (2.05)
Buys: director - beneficial owner -0.084 ∗

F-value (3.73)
Buys: director - other 0.186
F-value (0.48)
Buys: beneficial owner - other 0.270
F-value (1.01)
Sales: officer - director 0.001
F-value (0.01)
Sales: officer - beneficial owner 0.030
F-value (1.47)
Sales: officer - other 0.046
F-value (0.82)
Sales: director - beneficial owner 0.029
F-value (1.10)
Sales: director - other 0.029
F-value (0.76)
Sales: beneficial owner - other 0.016
F-value (0.08)

Maturity Pol. Yes
Signal × maturity pol. Yes
Learning pol. Yes
Fixed effects Day × firm
Adjusted R2 0.950

Obs 3,039,877
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Table K.2: By months to EA (Figure 5)

This table shows the estimates and standard errors used to construct Figure 5 Pan-

els D-F in the main paper. Standard errors are clustered at both the day and the

firm-quarter level and presented in parentheses. Table 6 describes the variables. *,

**, and *** indicates statistical significance at the 10%, 5%, and 1% level respectively.

Dep. var.: implied volatility (1)

1m ×1 (T > tR) (1/T − t)CBuys -0.184∗∗∗

(0.071)

1m ×1 (T > tR) (1/T − t)CSales -0.084∗∗∗

(0.015)

2m ×1 (T > tR) (1/T − t)CBuys -0.233∗∗∗

(0.041)

2m ×1 (T > tR) (1/T − t)CSales 0.027∗∗

(0.012)

3m ×1 (T > tR) (1/T − t)CBuys -0.035

(0.037)

3m ×1 (T > tR) (1/T − t)CSales 0.112∗∗∗

(0.009)

Difference in coefficients
Buys: month 1 - month 2 0.049
F-value (0.33)
Buys: month 1 - month 3 -0.149∗

F-value (3.14)
Buys: month 2 - month 3 -0.198∗∗∗

F-value (10.47)
Sales: month 1 - month 2 -0.111∗∗∗

F-value (23.59)
Sales: month 1 - month 3 -0.196∗∗∗

F-value (103.53)
Sales: month 2 - month 3 -0.085∗∗∗

F-value (24.17)

Maturity Pol. Yes
Signal × maturity pol. Yes
Learning pol. Yes
Fixed effects Day × firm
Adjusted R2 0.951

Obs 3,039,877
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L Alternative measures of earnings informativeness and prior
signals

Figure 3 shows that our measure of earnings announcement informativeness correlates signif-

icantly with previous measures proposed in the literature. Some of these measures (PW and

DJKS) are daily and ex-ante measures. As a consequence, we can use them to test the effect of

signals observed before the announcement and check if our main results emanate from our new

measure and estimating method or whether they are robust to other measures. As mentioned

before, these measures implicitly assume a flat term structure and are computed just using the

information of a given firm-day. Although, at first sight, the last feature looks like an advantage,

in practice, it leads to very noisy measures of earnings announcement informativeness as we ob-

serve in Table L.1 in which we present the summary statistics of the two alternative measures.

For instance, DJKS and PW estimates of earnings informativeness are negative more than 25%

of day-firm pairs. We can see in Figure 3 that when aggregated at the firm or yearly level, they

are mostly positive as the original papers show.

We construct these measures as described in Section I with the only exception of the measure

proposed by PW for which we have changed the weekly change to a daily change to have a

more timely measure of earnings informativeness. The unit of observation is the duple firm-day

although some measures cannot be computed everyday. More precisely, the normalized measured

by PW requires options that mature before and after the announcement, which constitutes a

likely scenario. Additionally, the method by DJKS requires another option that matures after

the announcement. Since we consider options with maturity below 90 days, days with two

options maturing after the announcement and one before are far less common; hence, number

of observations is lower. Likewise, there is a selection issue since three months before the

announcement we cannot compute DJKS measure and we know the effect of the signals differ

depending on the distance to the earnings announcement (see Figure 5 of the main paper).

Once we have the different daily measures of informativeness, which we label γPW and

γDJKS , we estimate the following equation by OLS:

γjj;i,t+1 − γ
j
j;i,t−1 = αj +

∑
a

γ−a,j∆Downward
a
i,t + γ+a,j∆Upward

a
i,t + δjγ

j
j;i,t−1 + εj;i,t (3)

where the j subscript indicates which of the methods we consider (PW and DJKS) and the
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Table L.1: Summary Statistics Alternative Measures (daily)

This table presents the summary statistics of the alternative measures of earnings announcement infor-

mativeness proposed by Dubinsky et al. (2019) (DJKS) and Patell and Wolfson (1979) (PW). These

methods require a measure of implied volatility as input and we consider two nonparametric and one

parametric.

Estimator Obs Mean S.D. P10 P50 P90

γDJKS 162,948 1.158 10.426 -9.129 2.128 10.272
γPW 370,206 -3.451 128.180 -112.827 1.131 100.551

subscripts i and t refer to the firm and trading date. ∆Upwardai,t is a dummy variable that

takes the value 1 if agent a produces a positive signal, for instance if buys by corporate insiders

of firm i reported on date t exceed, in value, sales by corporate insiders of the same firm reported

on the same date. We purposely use a similar notation for the coefficient of these variables as the

one for our main parameters in the main paper to emphasize their similarity. Concretely, γ+j (γ−j )

represents the change in the proportion of variance explained by the next earnings announcement

attributed to an insider buy (sale). Lastly, if the informativeness of the announcement is not an

integrated series of order one, the past level of informativeness affects the growth. We add the

lag of the corresponding measure to control for this mechanism generated by mean-reversion.

Table L.2 presents the effect of the different signals. We observe that results are non robust.

They not only change when we include the lag of the earnings informativeness but they also

change from one measure to the other. The only significant result with both measures is the

effect of insider sales.
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Table L.2: Baseline Results using Alternative Measures

This table presents estimates of Equation (3) using the two alternative measures of earnings announcement

informativeness proposed by Dubinsky et al. (2019) (DJKS) and Patell and Wolfson (1979) (PW). The

implied volatility is computed using Bakshi et al. (2003). Standard errors are clustered at both the day

and the firm level and presented in parentheses. *, **, and *** indicates statistical significance at the

10%, 5%, and 1% level respectively.

(1) (2) (3) (4)
Estimator DJKS PW DJKS PW

Dep. var: Nonparametric implied volatility (Bakshi et al., 2003)

Constant 0.567 -4.305∗∗ 0.615∗∗∗ -4.634∗∗

(5.270) (2.130) (0.051) (2.121)
∆Fore+ -0.149 0.106 -0.135 -0.101

(0.104) (2.026) (0.106) (2.045)
∆Fore− -0.179 -2.859 -0.144 -2.706

(9.307) (2.061) (0.093) (2.064)
∆Recom+ 0.264∗ -1.408 0.247 -2.024

(0.157) (3.352) (0.159) (3.330)
∆Recom− -0.081 0.974 -0.072 1.525

(0.153) (4.008) (0.155) (4.063)
∆Buys -0.166 10.763 -0.213 10.152

(72.315) (12.567) (0.731) (12.605)
∆Sales 0.137 5.190∗∗ 0.173 5.383∗∗

(11.131) (2.235) (0.113) (2.237)

Lagged Relevance No No Yes Yes

Ajusted R2 0.000 0.000 0.004 0.000

Obs. 81,312 188,235 80,272 187,244
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M Unobserved heterogeneity in earnings announcement infor-
mativeness

In the main paper, we exploit the variation in announcement informativeness across firms and

quarters. Nonetheless, it is possible that some of this variation is spurious. One robustness check

we implement to support our finding is to estimate the model using an event study (Section J).

In this section, we take a different approach by maintaining the same model but adding firm

and fiscal quarter heterogeneity. Since the results are qualitatively the same, we exclude the

heterogeneity from the main model because it adds another layer of complexity, which seems

unnecessary. Moreover, there is no obvious reason why the number of insider trades would

be higher for firms with high (or low) announcement informativeness besides the channels we

propose in the main paper.

M.1 Firm heterogeneity

The first heterogeneity we consider is across firms. To implement this estimation, we estimate

Equation (3) of the main paper but we interact the informativeness term

(
1
(
T > tRi,t

)( 1

T − t

))
with firm-fixed effects. This specification provides an extra burden to the identification; nonethe-

less, the main conclusions of the analysis remain unchanged. We note that the economic mag-

nitude of the effects of analysts forecasts and corporate insiders drops. Unfortunately, this

specification does not allow to compute the proportion of informativeness that increases or

decreases with the trades because the benchmark is firm-specific.
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Table M.1: Earnings information disclosed by other signals: Firm heterogeneity

This table reports the results of the regression shown in Equation (3) complemented with the

interaction of the informativeness term

(
1
(
T > tRi,t

)( 1

T − t

))
and firm-fixed effects. The de-

pendent variable is twice the log of implied volatily. Buys (Sales) is the number of days with net

buying (selling) by corporate insiders since the last EA. Forecast+ (Forecast−) is the number

of upward (downward) forecast revisions since the last EA. Recom+ (Recom−) is the number of

upward (downward) recommendation revisions since the last EA. Standard errors are clustered

at both the day and the firm-quarter level and presented in parentheses. Table 6 describes the

variables. *, **, and *** indicates statistical significance at the 10%, 5%, and 1% level respectively.

Dep. var.: implied vol. (1) (2) (3) (4)

1 (T > tR)

T − t
× Forecast+

-0.018∗∗∗ -0.011∗ -0.013∗∗

(0.006) (0.006) (0.006)

1 (T > tR)

T − t
× Forecast−

-0.035∗∗∗ -0.028∗∗∗ -0.026∗∗∗

(0.004) (0.004) (0.004)

1 (T > tR)

T − t
×Recom+ -0.072∗∗∗ -0.068∗∗∗ -0.066∗∗∗

(0.011) (0.011) (0.010)

1 (T > tR)

T − t
×Recom−

-0.085∗∗∗ -0.075∗∗∗ -0.070∗∗∗

(0.020) (0.020) (0.020)

1 (T > tR)

T − t
×Buys

-0.038∗∗∗

(0.014)

1 (T > tR)

T − t
× Sales

0.020∗∗∗

(0.004)

Maturity pol. Yes Yes Yes Yes

Signal × maturity pol. Yes Yes Yes Yes

Learning pol. Yes Yes Yes Yes

Firm × info. Yes Yes Yes Yes

Fixed effects Day × firm Day × firm Day × firm Day × firm

Ajusted R2 0.954 0.954 0.954 0.955

Obs. 3,039,877 3,039,877 3,039,877 3,039,877
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M.2 Fiscal quarter heterogeneity

The second dimension of heterogeneity we consider is across fiscal quarters. The information

content of fourth-quarter announcements might differ from interim announcements, because, for

example, more information is released together the full fiscal year results. Conversely, interim

quarter results are typically released in a more timely fashion. Further, differences can also

arise because of greater manager discretion over interim-period cost formulations, potentially

allowing them to defer bad news (e.g., Mendenhall and Nichols, 1988). Table M.2 splits the

analysis by fiscal quarter and indicates that the main effects persist within each of the four

quarters. The only notable difference we observe is that downward analyst recommendations

are more informative about earnings in the fourth quarter relative to interim quarters, as the

economic nearly doubles.
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Table M.2: Trades by insiders and the informativeness of earnings announcements

This table shows the results of the regression on column (3) of Table 3 in the main paper where we split

the sample into interim quarters and the fourth quarter. Standard errors are clustered at both the day

and the firm-quarter level and presented in parentheses. Table 6 describes the variables. *, **, and ***

indicates statistical significance at the 10%, 5%, and 1% level respectively.

Dep. var.: implied vol. (1) (2)

Quarter Interm Fourth quarter

1 (T > tR)

T − t
2.427∗∗∗ 2.615∗∗∗

(0.038) (0.061)

1 (T > tR)

T − t
× Forecast+

-0.048∗∗∗ -0.057∗∗∗

(0.007) (0.010)

1 (T > tR)

T − t
× Forecast−

-0.058∗∗∗ -0.052∗∗∗

(0.005) (0.007)

1 (T > tR)

T − t
×Recom+ -0.047∗∗∗ -0.059∗∗

(0.018) (0.028)

1 (T > tR)

T − t
×Recom−

-0.047∗∗ -0.088∗∗∗

(0.019) (0.031)

1 (T > tR)

T − t
×Buys

-0.111∗∗∗ -0.130∗∗∗

(0.026) (0.044)

1 (T > tR)

T − t
× Sales

0.052∗∗∗ 0.046∗∗∗

(0.005) (0.009)

Maturity pol. Yes Yes

Signal × maturity pol. Yes Yes

Learning pol. Yes Yes

Firm × info. Yes Yes

Fixed effects Day × firm Day × firm

Ajusted R2 0.954 0.954

Obs. 3,039,877 3,039,877
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